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Abstract—The positioning system based on ultrawideband
(UWB) can achieve centimeter-level positioning accuracy,
which is now widely used for indoor positioning. However,
UWB is subject to multipath effects and nonline-of-sight
(NLOS), which can cause positioning errors. And a UWB
positioning system with a minimum of three anchors is costly
and difficult to deploy, which is not an economical option. This
article presents a low-cost UWB-odometer fusion method for
mobile robot localization, which enables global localization
using only one UWB anchor. To improve the positioning accu-
racy and eliminate the influence of cumulative odometer error,
we propose a dynamic window-based particle filter (DWBPF).
It solves the problem of particle convergence and track loss.
It also adaptively modifies the score weights according to the power difference of the UWB to achieve a more robust and
accurate positioning. The experimental result shows that the system has a high positioning accuracy of 0.061 m.

Index Terms— Indoor positioning, mobile robot, particle filter (PF), ultrawideband (UWB).

I. INTRODUCTION

IN RECENT years, the application of mobile robots [1]
has developed rapidly, such as meal delivery robots [2],
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inspection robots [3], and sweeping robots [4]. These mobile
robots need to realize the fixed-point navigation function,
so the positioning system plays an important role in these
applications. While high-precision and stable positioning can
be achieved outdoors using the global positioning system
(GPS) [5], it is still a challenging task to achieve high-
precision positioning indoors. Li et al. [6] pointed out that
current stable and mature mobile robot positioning algorithms
mainly include: Markov localization, particle filter (PF)-
based approach, Rao-blackwellization filter-based approach,
and matching technique based on laser scanning. Among them,
the Monte Carlo localization based on probability graph [7]
is now widely used. Batistić and Tomic [8] pointed out
that current stable and mature indoor positioning system
(IPS) technologies mainly include: wireless local area network
(LAN), radio-frequency (RF) identification, ultrasonic, Blue-
tooth, odometry, and ultrawideband (UWB). These techniques
mainly use fingerprinting, triangulation, and dead reckoning
for position estimation. Among these technologies, odometry
and UWB have the highest positioning accuracy.

The odometry includes wheel odometry, inertial odometry,
laser odometry, radar odometry, and visual odometry. Wheel
odometry has been used for many skid-steering robots, such
as two- and four-wheel robots [9]. It is a simple and inex-
pensive localization technique for mobile robots. The wheel
odometer uses an encoder to calculate each wheel’s forward
distance, and the mobile robot’s displacement distance in
the x-axis and y-axis directions is calculated through the
kinematic model [10]. However, the Moiré fringe photoelectric
signal subdivision error [11] in the encoder leads to errors in
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the displacement distance and causes uncorrectable odometry
accumulation errors through constant motion, which cannot
provide long time tracking. Despite all this, odometers are
high-precision at tracking over short periods.

UWB-based IPS have no cumulative error in positioning
but are affected by multipath effect, non-line-of-sight (NLOS),
and other factors. In general, the uncertainty and spurious
measurements during UWB ranging can be represented by
an error model that combines a Gaussian distribution (for
line-of-sight (LOS) measurements), a Gamma distribution (for
NLOS measurements), and a constant value [12]. As for the
errors caused by NLOS, they are currently reduced by two
main methods: NLOS identification and NLOS mitigation.
NLOS identification [13], [14] can be realized by checking
the characteristics of the received signal or the statistics
of a channel impulse response. And NLOS mitigation can
be achieved through constrain optimization [15], maximum
likelihood-based technique [16], and robust estimator [17].
Although NLOS introduces errors into the UWB positioning
system, the long-term positioning accuracy of UWB-based
positioning systems is still the highest in IPS technologies.

In order to improve localization accuracy, multisensor fusion
algorithms are usually required to combine the advantages of
each sensor, such as the Kalman filter (KF), Extended KF
(EKF), or PF. PF has been widely used in localization systems
and has shown good performance. The main challenges in
applying PF to practical problems are properly modeling the
system functions and noise distribution, real-time performance,
and lost track issue [18]. As the effective number of particles
decreases over time, the performance of the PF will also be
affected. In dynamic positioning systems, certain conditions
can lead to stranded particle clouds. For example, when the
target velocity changes unexpectedly or when the environment
forces a change in the trajectory, the particle cloud may be
trapped indefinitely in the low probability region.

In this article, a dynamic window-based PF (DWBPF)
method is proposed, which combines the idea of the dynamic
window method (DWA) [19]. According to the equation of
the robot’s motion and the measured quality of the UWB,
DWBPF predicts the possible region of the robot and randomly
assigns particle samples in this region. The prediction and
observation scores are substituted into the evaluation function,
and the highest score region is obtained as the filter output.
The contributions of the proposed system are listed as follows.

1) In the initial stage of robot motion, the odometer
can provide high-precision tracking for the robot with
a known starting orientation. Based on this prop-
erty, the robot’s position relative to the UWB anchor
can be solved by triangulation and the least square
method, which provides the initial coordinate input for
DWBPF.

2) In the prediction stage of DWBPF, particles are ran-
domly distributed in the dynamic window, rather than
resampling the particles after the state transition [20],
so it can solve the particle convergence problem of
traditional PF well. In addition, a DWBPF resetting
approach is proposed for the issues of robot lost track.
When the deviation between the measurement radius and

the dynamic window is greater than the error threshold,
it is judged that the positioning system has lost the
tracking of the robot, and DWBPF needs to be restarted.

3) The fusion algorithm can correct odometer error to
reduce the odometer’s cumulative error by using the
odometer and UWB ranging measurement. Unlike exist-
ing UWB-based positioning systems, our approach
requires only one anchor. The resulting system greatly
reduces the required infrastructure and cost while pro-
viding long-term robot tracking with centimeter local-
ization errors.

The remainder of the article is organized as follows. Section II
summarizes related works in UWB-based positioning sys-
tems. The proposed DWBPF is described in Section III.
In Section IV, experimental validation as well as discussions
are presented and Section V concludes the article.

II. RELATED WORKS

In order to provide long-term and accurate tracking, the
researchers used the global positioning technique to correct the
local positioning, which was to fix the odometer’s cumulative
error through UWB. The UWB system obtains the distance
between two nodes by calculating the time of flight (TOF).
Two-way ranging (TWR) TOF enables measurement accuracy
of 10 cm. Under ideal conditions, the maximum measurable
range is 300 m [21].

For errors caused by NLOS, Suski et al. [22] proposed a
method to establish a UWB measurement noise map, effec-
tively reducing the impact of NLOS on positioning accuracy.
But this method requires a significant amount of time to
generate a measurement noise map. Zhu et al. [23] improved
the error map method. Although their method reduces the
number of measurement points by nearly 50%, it still needs
a sufficient amount of prior knowledge and is not robust to
dynamic environments.

Hybrid systems are the mainstream method to improve the
accuracy of UWB-based positioning systems. Feng et al. [24]
fused UWB and inertial measurement unit (IMU), Zhou
et al. [25] fused UWB and radar, and Nguyen et al. [26] fused
camera, IMU, and UWB. Although these hybrid positioning
systems based on UWB can achieve centimeter accuracy and
track targets robustly, they all need at least three anchors for
position estimation. The UWB anchors need to be reasonably
deployed, and the anchor coordinates must be used as prior
knowledge of the positioning system. Therefore, they are
not economical due to the costly infrastructure and difficult
deployment.

Tian et al. [27] implemented a PF-based low-cost inertial
navigation system (INS) and UWB fusion localization system,
which can track the target with a known initial position using
only one anchor. In order to mitigate the ranging errors caused
by UWB, Tian et al. [28] proposed a novel adaptive UWB error
mitigation scheme. It evaluates the uncertainty level based on
the power quality metric of the UWB. Under NLOS condi-
tions, only the Gamma distribution is used in the model. When
the power metric cannot distinguish between the LOS and
NLOS conditions, a combined Gaussian-Gamma distribution
is used to characterize the error profile. The proposed model
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is formulated in (1) where x, c0, μ, σ represents the ranging
measurement error, a constant term, mean, standard deviation
(SD) of Gaussian distribution, λ, k denotes the parameters in
Gamma distribution, Q represents the power metric for the
UWB measurement

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ
√

2π
· e− (x−μL )2

2σ2

when Q < 6 dBm

1
σ
√

2π
· e− (x−μ)2

2σ2 + λ·e−λx · (λx)k−1

�(k) + c0

when Q ∈ [6, 10] dBm

λ·e−λx · (λx)k−1

�(k) + c0

when Q > 10 dBm.

(1)

When using sparse UWB anchors for positioning, the lost
track issue may be encountered more frequently than with
the conventional multianchor positioning system. Therefore,
when the deviation of the particle cloud from the observed
value is too large, that is, the lost track issue occurs, and the
PF needs to be restarted. Turgut and Martin [29] proposed
a model to make decisions based on measurements of the
Kullback–Leibler divergence (KLD). If the KLD between the
distribution implied by the observation and the distribution
implied by the particle cloud is larger than a given threshold,
the PF is restarted. Tian et al. [18] improved the particle
restart method according to the UWB positioning model,
changing the rectangular distribution into a circular distrib-
ution. However, the restart rule of this method is that it starts
judging only when the tag approaches the anchor and then
starts moving away, and the threshold parameter relies on
engineering experience, thus having some limitations.

In the single anchor positioning system, the traditional PF
has the problem of particle convergence and difficulty in
establishing particle restart rules. In order to overcome these
shortcomings, DWBPF is proposed in this article. The restart
rule of this scheme does not need to satisfy specific trigger
conditions. UWB power quality indicators also adaptively
adjust the parameter weights to ensure that the dynamic
window can represent the error well. The method achieves
robust and accurate mobile robot tracking and is validated by
actual tracking experiments.

III. PROPOSED TRACKING METHOD

This section introduces the proposed DWBPF with an
overview followed by descriptions of key components of the
system.

A. Overview
The processing of the proposed system is shown in Fig. 1.

The data update rates of the odometer and UWB are different,
with the odometer having a higher update rate. Processing is
triggered each time the UWB data is updated to ensure data
synchronization. The odometer model in Section III-B gives
a detailed description of this process. The localization system
mainly consists of the Estimate initial position and long-term
tracking of the mobile robot, which are described in detail in
Sections III-C and III-D.

Fig. 1. Overview of the proposed system.

In the positioning system, the global coordinates of the
anchor (xa, ya, za) are known because the anchor has been
deployed in advance. The height h of the mobile robot is kept
constant. The airline distance s measured by UWB can be
converted into the horizontal distance d between the mobile
robot and the anchor by the formula as follows:

d =
√

s2 − (za − h)2. (2)

In the initialization stage of the positioning system, the
mobile robot’s head direction θ in the reference coordinate
system must be known prior knowledge. Because in two coor-
dinate systems with nonzero rotation angles (robot coordinate
system and reference coordinate system), the initial position
of the mobile robot cannot be estimated by only one anchor
positioning system. The rotation matrix can align the robot
coordinate system with the reference coordinate system so
that the odometer update data is converted to the displacement
distance in the reference coordinate system. Three appropriate
sampling points can calculate the position of the anchor
relative to the robot coordinate system and then the robot
coordinate can be transformed to the reference coordinate
system by coordinate translation, which completes the initial
position estimation of the mobile robot. The filter fusion
algorithm uses the same coordinate system in the long-term
position tracking stage.

B. Differential Mobile Robot Motion Model
Mobile robots currently on the market or used in academic

studies are commonly installed with photoelectric encoders.
Therefore, we predict the robot’s motion state by obtaining the
odometer data through the encoder conversion to realize the
prediction stage in the tracking filtering algorithm. The motion
model is shown in Fig. 2. �x and �y are the displacement
distance of the mobile robot in the x-axis and y-axis directions.

The forward distance of the driving wheel in the sampling
time can be obtained by converting the data of the photo-
electric encoder installed on the driving motor. Then �x and
�y can be obtained by converting the forward distance of the
driving wheel. Assuming that the diameters of the left and
right driving wheels are dL and dR , the distance between the
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Fig. 2. Motion model.

left and right wheels of the mobile robot is D, the number
of lines of the photoelectric encoder is P , and the increase
in the number of pulses of the photoelectric encoder in �t is
�N . The forward distance of the mobile robot’s left and right
driving wheels is formulated in the following equation:

�SL = (�N/P) · π · dL

�S R = (�N/P) · π · dR . (3)

To obtain �x and �y in the robot coordinate system,
we first converted the forward distance of the left and right
drive wheels into the displacement distance �S and shifted
angle �θ of the robot, as formulated in the following equation:

�S = (�SL +�S R) /2

�θ = (�SL −�S R) /D. (4)

�x and �y can be converted through �S, �θ , and a known
initial mobile robot’s head direction θ , as formulated in the
following equation:

�x = �S · [sin (θ +�θ)− sinθ ] /�θ

�y = �S · [cosθ − cos (θ +�θ)] /�θ. (5)

The trajectory of the mobile robot can be obtained by
accumulating the displacement distance of the mobile robot.
In a short time, the motion model will be very close to
the actual motion of the mobile robot. Because the forward
distance of the left and right driving wheels obtained by the
encoder is affected by the Moiré fringe photoelectric signal
subdivision error, the trajectory has a cumulative error, which
needs to be predicted and updated by filtering algorithm to
eliminate the cumulative error.

C. Initial Position Estimation
The robot’s initial position is estimated by applying tri-

lateration in the estimated initial stage. And the least-square
method is used to solve the optimal solution. We first select
three sampling points and then record their robot coordinates
(xi , yi ) and the UWB horizontal distance di . Since the global
coordinates of the anchor are known, the position of the anchor
under the robot’s coordinate system can be solved first and

then the robot’s position under the reference coordinate system
can be solved by a coordinate transformation. Therefore, the
estimated initial stage is carried out in the robot coordinate
system. The equation to solve for the relative coordinates
(x ′a, y ′a) of the anchor in the robot coordinate system is
formulated in the following equation:(

xi − x ′a
)2 + (

yi − y ′a
)2 = d2

i , i ∈ (1, 2, 3) . (6)

The selection of the three sampling points significantly
impacts the accuracy of the initial position estimation. Due to
the high short-term positioning accuracy and small cumulative
error of the odometer, the error in the initial position estimation
mainly comes from the ranging error of the UWB.

UWB ranging errors [28] mainly arise from inaccuracies in
the obtained TOF due to the multipath effect when receiving
data. In an open environment, the impact of multipath effects
can be ignored. There will be a direct propagation path for
data transmission in the air, and the first path component
(FPC) will arrive at the receiver corresponding to the direct
path at the earliest. The received signal power is likely
more concentrated on FPC than other multipath components
(MPCs). In the case of NLOS, the transmission power will be
significantly attenuated as UWB waves pass through obstacles
or disperse in more MPCs, resulting in more ambiguity when
FPC determines the reception time stamp. In the case of LOS,
UWB has a higher ranging accuracy.

Decawave [30] described the received signal power of
the DW1000 Rx_Power and the signal power of the first
path F P_Power. The difference between the two powers can
quantify the quality of the UWB measurement. The metric,
Q, is shown in formula (7) in the unit of dBm, where Fn

is the amplitude value of the first path amplitude (point n)
and C is the channel impulse response power value. We can
determine whether the channel is LOS or NLOS according to
the difference Q between these two powers. Empirically, if the
difference Q is less than 6 dBm, the channel is more likely
to be LOS, while if it is greater than 10 dBm, the channel is
more likely to be NLOS

Q = 10× log10

(
C × 217

F2
1 + F2

2 + F2
3

)
. (7)

According to the ranging principle of UWB, three power
differences can be obtained in one ranging cycle: Q1, Q2, and
Q3. Since the ranging frequency of UWB is around 3.57 Hz,
the channel characteristics are assumed to be stable during one
ranging cycle. As the anchor can obtain two power differences
Q1 and Q3, which are close in value, we define the power
metric Q̃ of the UWB measurement as the average value of
Q1 and Q2.

The measurement quality is quantified using the Q̃ value,
and the three coordinate points are selected according to the
value of Q̃, so that the error is guaranteed to be small.
To ensure an optimal solution to formula (6), three coordinates
that are not collinear need to be selected, that is, the robot’s
motion posture has changed. Due to sensor drift, we judge
the angle between the coordinates to be 30◦–150◦ as a sig-
nificant change in attitude. According to the above sampling
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Algorithm 1 Initial Position Estimation
Input:

(xa, ya), Anchor coordinates
(x ′t , y ′t ), d ′t , Q̃t , Odometry coordinates, horizontal distance
and power metric

Output:
1: while 1 do
2: t = t + 1
3: if Q̃t < 6 then
4: // Record the first point
5: if (x1, y1) == Null then
6: (x1, y1)← (x ′t , y ′t ), d1← d ′t
7: // Record the second point
8: else if (x2, y2) == Null then
9: // The motion changes significantly

10: if
√

(x1 − x ′t )2 + (y1 − y ′t )2 > 1 then
11: (x2, y2)← (x ′t , y ′t ), d2← d ′t
12: end if
13: // Record the third point
14: else if (x3, y3) == Null then
15: // The motion changes significantly

16: if
π

6
< |(arctan(

y2

x2
)− arctan(

y ′t
x ′t

)| < 5π

6
then

17: (x3, y3)← (x ′t , y ′t ), d3← d ′t
18: end if
19: else if (x3, y3) �= Null then
20: (x ′a, y ′a)← according(10)
21: break
22: end if
23: end if
24: end while

rules, three optimal coordinates are selected along with the
corresponding distance values.

As there are two unknowns and three equations in (6),
to solve for the relative coordinates of the anchor, the least-
squares method is usually used to solve the contradictory
equations. We convert formula (6) into a matrix as formulated
in (8), where the values of A and B are formulated in the
following equations:

A

[
x ′a
y ′a

]
= B (8)

A =
⎡⎣x1 − x2 y1 − y2

x1 − x3 y1 − y3
x2 − x3 y2 − y3

⎤⎦ B =

⎡⎢⎢⎢⎣
d2

2−d2
1+x2

1−x2
2+y2

1−y2
2

2
d2

3−d2
1+x2

1−x2
3+y2

1−y2
3

2
d2

3−d2
2+x2

2−x2
3+y2

2−y2
3

2

⎤⎥⎥⎥⎦ .

(9)

The optimal relative coordinates of the anchor are solved
by formula (10). The overall robot initial position estimation
pseudo-code is shown in Algorithm 1[

x ′a
y ′a

]
=

(
AT A

)−1
AT B. (10)

After obtaining the position of the anchor under the robot
coordinate system (x ′a, y ′a), the initial position of the robot can

Fig. 3. DWBPF principle. Green is prediction areas, blue is observation
areas, and red is optimal coordinates. (a) Predicted areas. (b) Observa-
tion areas. (c) Optimal coordinate solution.

be obtained as (xa−x ′a, ya− y ′a). The robot coordinates can be
converted to the reference coordinate system by the coordinate
translation matrix, as formulated in (11). (x̂0, ŷ0) is the initial
input coordinate of DWBPF⎡⎣x̂0

ŷ0
1

⎤⎦ =
⎡⎣1 0 xa − x ′a

0 1 ya − y ′a
0 0 1

⎤⎦⎡⎣x3
y3
1

⎤⎦ =
⎡⎣x3 + xa − x ′a

y3 + ya − y ′a
1

⎤⎦ . (11)

D. Dynamic Window-Based Particle Filter
The traditional PF has the problem of particle convergence

and difficulty in establishing particle restart rules. Our pro-
posed improved particle filtering algorithm incorporates the
ideas of DWA. The prediction stage is a random distribution of
particles in a circular dynamic window, rather than resampling
the particles after the transition, which solves the problem
of particle convergence, as shown in Fig. 3. These particles
predict the robot’s position well because there is always
a particle whose coordinates are close enough to the real
coordinates of the robot.

The DWBPF uses particles in a dynamic window to rep-
resent the measurement error, so the radius r of the dynamic
window is related to the mean and SD of the error model.
From formula (1), it can be deduced that under LOS, the
mean and SD are μ and σ , respectively, and under NLOS, the
mean and SD are k/λ and (k)1/2/λ. In LOS, the ranging error
follows Gaussian distribution. According to the properties
of Gaussian distribution, we believe that the ranging error
has a 95% probability of appearing between μ − σ and
μ + σ . To ensure the robustness of the dynamic window,
under NLOS, we consider that the errors are all larger than
the mean k/λ, and the errors increase in proportion to the SD
(k)1/2/λ. After determining the LOS and NLOS’s error range
is between μ + σ and k/λ in the case that NLOS and LOS
cannot be distinguished. Therefore, the measurement radius
r is calculated as shown in the formula (12). For the lost
track problem, we can convert this to the degree of deviation
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of the measurement radius from the dynamic window. If the
deviation reaches the lost track threshold, it is decided that the
positioning system needs to restart the DWBPF

r

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(μ− σ)+ (2 · σ) · Q̃

6
, Q̃ < 6 dBm

(μ+ σ)+
(

k

λ
− (μ+ σ)

)
· Q̃ − 6

10− 6
, Q̃ ∈ [6, 10] dBm

k

λ
+
√

k

λ
· (Q̃ − 10

)
, Q̃ > 10 dBm.

(12)

After obtaining the possible region of the mobile robot,
selecting an optimal coordinate as the filter output is necessary.
Thus, we propose an evaluation function to evaluate the
quality of each particle and calculate the corresponding score.
In practice, systematic errors in the odometer can cause
prediction errors, and multipath effects in the UWB can cause
observation errors. Considering these errors, we divide the
scores into two kinds of scores. One is the prediction score,
that is, the closer the particle is to the predicted value, the
higher the score. And the other is the observation score, that
is, the closer the particle is to the observed value, the higher
the score.

In the prediction score, we use the proximity of the particle
to the predicted value as a measure, as shown in Fig. 3(a),
that is, the distance between the calculated coordinates of each
particle and the predicted coordinates, as formulated in (13).
In the observation score, we divide it into an observation
distance score and an observation angle score, as shown in
Fig. 3(b). The distance score uses the proximity of the particle
to the observation radius as a measure, that is, the distance
from each particle to the measurement radius, as formulated
in (14). The angle score uses the proximity of the particle
to the observed angle as a measure, that is, the angular
difference between the angle of each particle to the anchor
and the angle of the predicted coordinates to the anchor,
as formulated in (15). Finally, these metrics are inverted as
the final score. The higher the proximity, the higher the score,
and the maximum score is limited to 1000 to prevent an infinite
score, as formulated in (16)

pre(i) =
√((

x̂t−1 +�x
)− z(i)

x

)2 +
((

ŷt−1 +�y
)− z(i)

y

)2

(13)

dis(i) =
√(

z(i)
x − xa

)2 +
(

z(i)
y − ya

)2 − d (14)

deg(i) =
∣∣∣∣∣arctan

(
z(i)

y − ya

z(i)
x − xa

)
− arctan

(
ŷt−1 +�y − ya

x̂t−1 +�x − xa

)∣∣∣∣∣
(15)

ω̃
(i)
P =

{
1/P(i), 0.001 < P(i)

1000, P(i) ≤ 0.001
, P ∈ (pre, dis, deg) (16)

(zx , zy) is the coordinate of the particle, (x̂t−1, ŷt−1) is the
output of the filter at the previous time, and (xa, ya) is the
coordinate of the anchor.

In order to improve the robustness of DWBPF in complex
environments, we propose an adaptive score matrix, as formu-
lated in (17), where Z11 is the prediction weight, and Z12 is the
observation weight. The larger Q̃ is, the larger the observation
error will be, and DWBPF should trust the predicted value
more. Therefore, the prediction weight is directly proportional
to Q̃, while the observation weight is inversely proportional
to Q̃. We take the maximum Q̃ value of 6 dBm under LOS as
the dividing line. When Q̃ is less than 6 dBm, the observed
weight is greater than the predicted weight, and when Q̃ is
greater than 6 dBm, the predicted weight is greater than the
observed weight

Z = [
Q̃, 62/Q̃

]
. (17)

After obtaining the sum of the scores of each particle, the
particles were ranked according to their scores. The top 5%
of the particles are selected as the optimal set of particles, and
their average is used as the filter output coordinates, as shown
in Fig. 3(c). The overall filtering pseudo-code is shown
in Algorithm 2.

IV. EXPERIMENTAL EVALUATION

The proposed DWBPF is implemented and evaluated with
practical robot positioning experiments. Experimental setup
and result analysis are presented in this section.

A. Devices and Experimental Setup
The mobile robot used in this experiment is the aimibot

epidemic prevention robot (EPR). The body of EPR accom-
modates a balanced drive system (with four universal wheels
and two direct drive wheels), reversible dc motor and drive
electronic equipment, a high-resolution motion encoder, and
battery power. It also has an ultrasonic, anti-drop sensor,
a digital attitude sensor, and an NUC onboard computer.

In this experiment, we use the DW1000 UWB chip and
STM32F1 minimum system as a node. The STM32 commu-
nicates with the DW1000 via the SPI protocol and controls the
DW100 for data transmission and reception. After obtaining
the corresponding timestamps, we calculate the difference in
TOF and get the average TOF. Multiply it by the flight speed.
We then get the distance. As the DW1000 has some systematic
errors, the DW1000 needs to be externally calibrated using the
method in [31] for both DW1000 chips. Finally, the distance
data is brought into the calibration formula to obtain the exact
distance between the two nodes.

The mobile node communicates with the EPR through
RS232. The processing platform of the EPR reads the distance
data and the power metric obtained from the tag. We publish
the distance, power metric, and odometer data via a topic
using the robot operating system (ROS). The terminal server
in the same LAN subscribes to the topic published by the
EPR through MATLAB, records all the data, and passes
different filtering algorithms to verify the tracking performance
of DWBPF.

This experiment has four parts: the UWB static-ranging
error experiment, initial position estimation experiment,
DWBPF tracking experiment, and DWBPF restart experiment.
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Algorithm 2 DWBPF
Input:

xa, ya , Anchor coordinates
x̂t−1, ŷt−1, Previous time filtered output
�x,�y, Odometer increment
d, Q̃, Horizontal distance and power metric

Output:
1: // Set the radius and center of the dynamic window
2: r ← according(12)
3: o← (x̂t−1 +�x, ŷt−1 +�y)
4: // Determine whether to restart
5: Pao ←

√
(o(1)− xa)2 + (o(2)− ya)2

6: // Restart if conditions are not met
7: if |d − r | < Pao < d + r then
8: // Particles are distributed in the dynamic window
9: for i = 1→ n do

10: r ′ ← rand() · r
11: θ ′ ← rand() · 2π
12: z(i)

x ← r ′ · cos θ ′ + o(1)
13: z(i)

y ← r ′ · sin θ ′ + o(2)
14: end for
15: // Calculate score
16: for i = 1→ n do
17: ω̃

(i)
P ← according(16)

18: end for
19: // Score normalization
20: for i = 1→ n do
21: ω

(i)
P ← ω̃

(i)
P /

∑n
m=1 ω̃

(m)
P

22: end for
23: // Calculate the total score
24: Z ← according(16)

25: ω(i) = ω
(i)
pre × Z11 + (ω

(i)
dis + ω

(i)
deg)× Z12

26: // Sort by ω

27: μ̃(i) =
[
ω(i), z(i)

x , z(i)
y

]
28: μ← sor t (μ̃)
29: // Save the coordinates of the first 5% of the score
30: for i = 1→ n · 5% do
31: (x ′(i), y ′(i))← (μi2, μi3)
32: end for
33: (x̂t , ŷt )← (mean(x ′), mean(y ′))
34: end if

The experimental site is located in Laboratory 201, National
Engineering Research Center for Robot Vision Perception
and Control Technology, Hunan University. The layout of
the experimental area is shown in Fig. 4. The experimental
area is an open indoor environment, the reference path is a
rectangle of 3 × 2 m, and the lap distance is 10 m. To verify
the effectiveness and robustness of DWBPF, we placed a
rectangular obstacle with a side length of 0.3 m within the
range of the reference path to make the EPR appear NLOS
during movement. The anchor node is arranged at a height of
2 m, and the coordinate of the anchor is defined as the origin
of the coordinate system. The x-axis is parallel to the wall
where the anchor is installed. We mark eight sampling points
on the floor to evaluate the tracking accuracy: the four vertices

Fig. 4. Experimental area.

TABLE I
PROPOSED DWBPF PARAMETER SETTINGS

of the reference path and the midpoints of the four edges. The
starting point of the EPR is set as (−0.5, −1.8). When the
EPR passes through a sampling point, the laser rangefinder is
used to obtain the coordinates of the EPR, and the odometer
coordinates and filtered output coordinates are recorded.

The starting and ending positions of the localization exper-
iment were the sample points closest to the anchor. In the
tracking experiment, the EPR repeated the reference path seven
times for a total trip of 70 m and obtained 56 groups of sample
point data. In the restart experiment, we make the wheel
of the EPR slip between the fifth and sixth sample points,
resulting in the continuous increase of the EPR odometer
data, but the actual position does not change, which will lead
to a serious lost track problem. After the EPR skidded, the
reference path was repeated three times to obtain 24 groups
of sampling point data. In addition to the obstacle objects we
arranged, no other NLOS obstacles, such as people and walls,
were introduced in the experiment. The parameter settings
in the proposed DWBPF are summarized in Table I. The
parameter settings of the UWB distance measurement error
model use the same values as provided in [21]. The Gaussian
distribution has a mean value of 0.1, and SD equals 0.055. The
Gamma distribution is defined by parameters λ and k equal to
3.5 and 2, respectively.

B. Results and Discussions
First, we test the ranging effect of UWB in an open

environment. The test distance is 2 ∼ 10 m and the distance
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Fig. 5. Static error.

TABLE II
INITIAL POSITION ESTIMATION

interval is 1 m. We measure 50 sets of distance data at each
test point and calculate the differences from the real distance
data as the errors, as shown in Fig. 5. Due to the introduction
of the calibration equation, the measured value fluctuates up
and down around the real value, with the maximum error of
0.082 m and an average error of 0.026 m.

To verify the effect of initial position estimation, we let
the EPR move randomly from different initial positions in
the experimental field. After the EPR obtains three sampling
points that meet the conditions in (6), the initial coordinates
are solved, and the results are shown in Table II. The aver-
age error of the estimated coordinates of the initial position
is 0.17 m.

When the EPR’s initial position is obtained, the EPR is
controlled to move to the start point of the experiment, and the
tracking experiment is carried out. The results of the tracking
experiment are shown in Fig. 6. Fig. 6(a) shows the trajectory
estimated by the odometer, Fig. 6(b) shows the trajectory esti-
mated by the traditional PF, Fig. 6(c) shows the trajectory
estimated by the proposed DWBPF, and Fig. 6(d) shows the
error of the three estimated trajectories at the sample point.
In the trajectory of the odometer, the odometer is affected
by the cumulative error, which leads to the position shift of
the odometer, and the error increases significantly in the latter
stage of the movement. The trajectory of the traditional PF
does not drift significantly, but there is a tilt in the lower right
part of the motion path, which is the error caused by NLOS,
but with the EPR’s movement, this error caused by NLOS is
eliminated. The trajectory of the proposed DWBPF is closer
to the ground truth trajectory, and no obvious tilted occurs in
the NLOS road segment. The error curves show the long-term
reliability of the proposed DWBPF as well as its robustness
in complex environments.

Fig. 6. Tracking paths of the experiment. (a) Odometer. (b) PF.
(c) DWBPF. (d) Positioning error.

TABLE III
QUANTIZED TRACKING PERFORMANCE

The quantized tracking performance results are shown in
Table III. We analyzed the 56 groups of sampled data to find
the average and maximum errors, respectively. The maximum
errors of the three estimation methods are 0.298, 0.189, and
0.125 m, respectively, and the average errors are 0.132, 0.086,
and 0.061 m, respectively.

In the restart experiment, we first repeated the above exper-
iment. When the EPR passes the fifth sample point, we idle
the EPR’s wheels to simulate the robot slipping phenomenon.
When the displacement increment of the odometer reaches
2 m, we let the EPR move normally, and then the robot has
already suffered a serious lost track problem, as shown in
Fig. 7(a). The black curve is the reference trajectory, and the
blue curve is the trajectory estimated by the odometer. After
the EPR resumed motion, we let the EPR repeat the reference
trajectory twice, and the trajectory estimated by DWBPF
is shown in Fig. 7(b). The blue marks are the coordinates
where DWBPF recognizes the out-of-track phenomenon, and
the green marks are the coordinates after DWBPF restarts.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 15,2023 at 03:26:26 UTC from IEEE Xplore.  Restrictions apply. 



2930 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

Fig. 7. DWBPF restart experiment. (a) Odometer. (b) DWBPF.

The coordinate error after restart is 0.13 m, which is the
same as the second experiment’s initial position estimation
coordinate error. The tracking error of subsequent DWBPF is
consistent with that of the third experiment.

The DWBPF proposed in this article aims to reduce the
cost of the positioning system and enhance the tracking per-
formance of the positioning system. The experimental results
show that DWBPF still has good tracking performance in the
NLOS environment, and the restart method of DWBPF can
ensure the system’s long-term performance. DWBPF solves
the problem of skid and kidnapping of robots well and has
accurate and long-term performance in robot positioning.

V. CONCLUSION

Compared with the traditional UWB indoor positioning
scheme, the positioning system based on the odometer and
UWB fusion proposed in this article has a lower cost, and
only one anchor can be used to achieve global positioning.
Instead of the error model, DWBPF uses randomly distributed
particles, that is, a dynamic window is used to represent the
observation and prediction errors. The range of the dynamic
window is adaptively adjusted according to the received signal
power quality metric, and the score weight is adaptively
adjusted according to the metric, which still has accurate
and stable robust performance in complex environments. The
restart scheme of DWBPF does not rely on an exact error
model and does not need to satisfy specific triggering con-
ditions. Only the window size and the measurement radius
are used to determine whether the restart condition is met.
Experiments show that DWBPF can achieve centimeter-level
positioning, and the average positioning error is 0.061 m,
which realizes long-term and accurate mobile robot tracking.

The accuracy of the proposed DWBPF algorithm will be
affected by the initial position prediction and UWB ranging
accuracy. The localization effect of this algorithm is not good
in a large-scale and multiscene indoor environment. Therefore,
our future work focuses on improving the accuracy of the
initial coordinates of the robot and adding additional anchors
to increase the positioning range.
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