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Abstract—Epidemic prevention robots(EPRs) play an ex-
tremely important role in the period of an influenza outbreak.
Most of the used scenes of EPR are indoor scenes such as ward
and consulting room. The cost of the existing indoor positioning
system based on vision is too high, but the positioning accuracy
based on wireless technology is not enough, which restricts
the development of EPR. In this paper, a positioning system
based on UWB is proposed to provide a positioning service for
EPR. A particle filter with adaptive particle redistribution is
used to fuse the odometer and UWB. The incremental data
of the odometer is used to predict the motion of EPR, and
UWRB data is used as the observation value to realize the pose
estimation of EPR. The experimental results in the ward scene
show that the method has good tracking performance and
the positioning error is 3~7cm, providing robust and precise
localization estimation for EPR applications.

Index Terms—EPR, indoor positioning system, UWB, adap-
tive particle redistribution

I. INTRODUCTION

With the rapid development of Epidemic prevention
robots (EPRs) in recent years, the working environment
of EPR has become more and more diverse, and the
navigation application of robots in a complex environ-
ment has become particularly important. The accurate
estimation of robot position is the key to its navigation
effect. Nowadays, outdoor location system has developed
very maturely, such as global position system (GPS) of the
United States [1]. These localization systems have more
accurate positioning performance in the outdoor environ-
ment, but they can not complete the positioning in the
indoor environment. At present, several indoor positioning
schemes have been proposed. For example, Wang et al.
[2] applied WiFi Positioning Technology to the complex
indoor environment; Bai et al. [3] implemented indoor
positioning function with Bluetooth module. These radio-
based technologies can only achieve meter-level accuracy.
Although the location system based on lidar [4], QR
code [5] [6] and lidar and vision fusion [7] can achieve
centimeter-level accuracy, which the energy consumption
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and cost are significantly improved. Moreover, there is a
non-line-of-sight situation in the ward environment, which
will make it impossible to realize the positioning of the
EPR.

To obtain higher location accuracy and lower power
consumption, researchers focus on ultra wide band (UWB)
technology. UWB signal has a wide band range of
3.1~10.6GHz. The wide band performance makes it have
a very narrow pulse, high time resolution, and strong
penetration, which is suitable for indoor environment
positioning. However, in the actual location process, the
positioning accuracy of the object is not only affected
by the device itself but also the occlusion of the wireless
signal in the complex environment will increase the po-
sitioning error. Therefore, the single UWB location and
navigation technology [8] [9] has been unable to meet the
growing production and living needs of people. To get
more accurate location data, researchers proposed a multi-
sensor data fusion scheme and different fusion algorithms.
The main algorithms based on the Kalman filter are as
follows: Li et al. [10] proposed a multi-sensor data fusion
algorithm based on fuzzy adaptive KF filter for multi-
sensor dynamic system whose covariance of observation
noise can not be accurately known or constantly changing.
Feng et al. [11] propose an integrated indoor positioning
system combining IMU and UWB through the extended
Kalman filter (EKF) and unscented Kalman filter (UKF).
Li et al. [12] used error state Kalman filter (ESKF)
to fuse the measurement results of IMU with UWB.
Because the motion state of the mobile robot can not be
accurately predicted in most cases, particle filter algorithm
for nonlinear system [13] has been gradually applied to
robot location system. Wang et al. [14] used a particle
filter algorithm to fuse lidar and UWB and achieved robot
relocation in the scene with fewer features. Tian et al. [15]
proposed an INS and UWB fusion system using particle
filter (PF) for pedestrian tracking. To better achieve the
tracking effect of the robot, most positioning schemes
choose to use radar or IMU sensors to fuse with UWB
or GPS, which has a high cost and power consumption.

Aiming at the shortcomings of the traditional position-
ing scheme, this paper proposes a fusion of UWB and
odometer positioning systems based on particle filters. It
achieves higher positioning accuracy and lower positioning



cost. The main contributions of this paper are as follows:

(1)For the nonlinear motion of the EPR, the algorithm
uses the mileage increment data of the odometer to predict
the next moment of the robot’s motion, and evaluates the
predicted particles through the UWB data, retains the
particles with higher weight and some particles with lower
weight, and then circulates the filtering process to realize
the positioning function of the anti epidemic robot.

(2)In order to improve the tracking effect of epidemic
prevention robot, we propose a filtering algorithm with
adaptive particle weight distribution, which adjusts the
distribution of predicted particles according to the angle
data of odometer to enhance the tracking effect.

(3)Both simulation and practical experiments have been
conducted. A large number of field tests are carried out
in the ward environment, and the results show that the
method has high positioning accuracy and robustness,
which is suitable for the application of EPR in the ward
and clinic.

II. UWB LOCATION

The principle of UWB ranging is to calculate the prod-
uct of a time of flight (TOF) and electromagnetic wave
propagation speed, so the main working mechanism of the
module is to record the time of information transmission
and arrival through information exchange, and calculate
the flight time according to the relationship between these
times, so as to calculate the distance between the base
station and the tag.

A. Double-sided Two-way Ranging

This design uses a Double-sided Two-way ranging
method based on the time of flight (TOF) method. After
the tag initiates the ranging request (Poll), it changes
to the receiving state. The anchor in the receiving state
returns the response message (Resp) after receiving the
request message, and the tag returns the final message
(Final) after receiving the response message. In the whole
process, three packets are sent between the two devices,
three ranging are carried out, and four-time intervals are
generated. The time interval between the tag sending the
‘Poll’ message and receiving the ‘Resp’ message is Tround1
, and the time interval from receiving the ‘Resp’ message
to sending the ‘Final’ message is T,oung2 - The time
interval between the anchor receiving the ‘Poll’ message
and sending the ‘Resp’ message is Ty epiy1 , and the time
interval from sending the ‘Resp’ message to receiving the
‘Final’ message is Trepiy2 - Consequently, The distance
between the tag and the anchor should be:

Tporp _ (Troundl X TroundQ - Treplyl X Treply2>
Troundl + Tround2 + Treplyl + TreplyQ

In order to achieve two-dimensional positioning, a

mobile tag needs to measure the distance to at least

three fixed anchors, and then combine the three distances

in an infrastructure-based solver to calculate the coor-

dinates. Using conventional two-sided two-way ranging,

(1)
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each distance measurement needs to transmit 3 messages,
meaning that the label needs to send 6 messages and
receive 3 messages, for a total of 9 transmissions to locate
the label position. In the asymmetric ranging scheme,
the tag sends the Poll message, and the three anchors
delay sending the Resp message after receiving the Poll
message. The tag records the time stamp of the Resp
message returned by the three anchor nodes in turn, and
then packages and sends the Final message. The anchor
read the corresponding time stamp information, which
makes the tag be located after sending two messages and
receiving three messages. This scheme is illustrated in
Fig. 1. This represents a substantial saving in message
traffic thereby saving battery power and air-time.
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Fig. 1. UWB positioning scheme.

B. Calibration of UWB

The existing UWB positioning system does not have
an accurate error model, so it is necessary to calibrate
the UWB ranging error model in the actual environment.
Firstly, the location of the anchor is fixed, and then place
the tag on 16 random positions from 1.5m to 12m, then
sample 100 groups of distance data at each position, and
finally process and analyze the collected data through
MATLAB.

Average 100 groups of data collected at each position
as the measurement value of the position. The result of
system error is the difference between the average value
at each position and the corresponding true value, as
shown in Fig. 2. It can be seen from the figure that the
error presents a stable trend with the increase of ranging
distance. After fitting, the curve equation is as follows:

flz)=58e"% 2% —14e7 %% 2 +0.1-2—-20.2 (2)

C. UWB Coordinate Calculation

The anchor should be selected in the peripheral and
as high as possible position of the EPR movement area.
According to the indoor environment, the anchor are
arranged on the three equal points of the circumscribed
circle of the moving area as far as possible to ensure that
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Fig. 2. Fitting curve of UWB ranging.

the distance difference between the tag and each anchor
is small and reduce the system error caused by UWB.
The error caused by NLOS can be avoided by placing the
anchor in a higher place.

Suppose that the coordinates of the anchor are
Al(Xl, Yl, Zl), AQ(X27 YQ, Zg),Ag(Xg, Y:a,, Z3), and the co-
ordinates of anchor Ay, As and A3 are known when they
are installed and deployed. And the coordinates of the
tag are To(Xo, Yo, Zo).Set D1,Do, and D3 as the relative
distances calculated by the time of flight between the three
anchor stations and the tag, and each anchor draws a
circular track with the relative distance as the radius.
The intersection of the three circular equations is the
coordinate of the tag. The distance from the tag to the
i-th anchor can be expressed as:

(mi _$>2+(yi _y)2 Zd?,i € (172v3) (3)

Because there are two unknowns X and Y, and there
are three equations, to calculate the coordinates of the
tag, the least square method is usually used to solve the
contradictory equation.Firstly, the equation is transformed
into matrix form:

A m - B
Y

2 42, 2 2, 2 2
dy—ditay —x5+yi—ys

(4)

xl - x2 yl o y2 2 2 2 2 2 2 2
A= |z —x3 y1—ys| B= ds—d1+wlgwg+y1—y3 (5)
To — T3 Y2 — Y3 di—dj+el—aitys—y3

2

The coordinates of the tag are obtained by the least
square method:

m = (ATA)'ATB (6)

68

III. FUSION OF UWB AND ODOMETER DATA
BASED ON PARTICLE FILTER

Because the motion state of the EPR is usually un-
known, the state equation of the robot motion can not be
given, which Kalman filter can not be used to estimate
the pose of the robot. For the nonlinear motion of EPR,
a particle filter is usually used to estimate the trajectory
of the robot.

A. Position Prediction by Odometer

In this paper, the incremental data of the odometer
is used to predict the motion state of the robot, and
the influence of the cumulative error of the odometer on
the positioning accuracy of the robot is eliminated. The
main idea is to assume that the robot maintains the same
motion state in the four sampling times of the odometer,
and predict the pose of the fourth odometer according to
the data of the first three odometers. Because only the
difference of odometer data is used in each prediction
process, the influence of odometer cumulative error is
avoided. The incremental model of the x-axis component
(y-axis components are similar) is expressed as follows:

{ Ar=[z(t—1)—2(t—-2)) — (x(t —2) —z(t — 3))]
AZ=z(t—1)—z(t—2)
(7)

The prediction model can be expressed as follows:

zo(t—1)+ [Arx+x(t —1) —z(t —2)] |Az| > 0.1
2ot — 1)+ [+t — 1) — 2(t — 2)] |Az| < 0.1
zp(t — 1) |AZ] < 0.1

(8)
When the EPR is turning, it can’t predict the position
of the robot at the next moment through the distance data
of the odometer, resulting in no particles to match near
the coordinates after turning, which makes the filtered
data drift greatly. So we need to judge whether the robot
is turning or not through the angle data. When the robot
stops turning, the particles are randomly redistributed in
a certain range of the current coordinates of the robot to
ensure that there are enough particles for the robot to
match after the robot turns. The particle redistribution
model is as follows:

z:(t) +a
zy(t) +0b

B. Fusion of UWB and Odometert Data

The particle filter is based on the Bayesian principle
and importance sampling. Its essential idea is to use a
group of samples or particles to approximate the posterior
distribution of the system, and then use approximate
estimation to approximate the state of the nonlinear
system. The core of the whole process is an iterative
process of “prediction-correction”. The specific process is
as follows:

particle(i) = [ } a,be (—1,1),7 € (1,1000) (9)

o Initialization: N particles are randomly distributed
in the whole map, the initial pose of the robot is

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on September 22,2021 at 03:25:26 UTC from IEEE Xplore. Restrictions apply.



given by the stabilized UWB coordinate data, and The particle filter process and experimental scene are
the initialization data of the odometer is the UWB  shown in Fig. 3.
coordinate data.

e Prediction: According to the odometer prediction B. Data Acquisition and Analysis
model given above, each particle is brought into the
same state transition equation to make the same
prediction for each particle.

o Correction: The UWB coordinate data at t is com-
pared with the predicted particle coordinate data, and
the predicted particle coordinate is evaluated. Then
we calculate and normalize the weight of each particle.

e Resampling: The particles with small weight are
eliminated, and the particles with large weight are
copied to meet the needs of particle number and
save computing time. Reselect the original particle
set {th)’ w,gl)} , and form a new particle set. The new
particle set is used as the prior knowledge to predict

The results of the static state positioning experiment
are shown in Fig. 4, and the positioning error is shown in
Table I. After 100 sets of coordinate data are calculated
by UWB solution, the average coordinate is taken as the
test coordinate point. When the tag is still, the maximum
positioning error is 4cm, and the average positioning
error is 3.8cm. Due to the multipath effect in UWB data
transmission, data fluctuation will occur in UWB ranging,
resulting in a centimeter-level error in the coordinates.

° anchor

the robot position at t + 1. 4 - real position
anchor B + UWB position
anchorC
IV. THE RESULTS OF EXPERIMENTS
£2 anchor
A. Layout Experimental System N ik
The robot used in this experiment is AIMIBOT EPR 1 —— —
The main body of EPR is mainly composed of the o. oy -

aluminum roof and carbon steel. The body contains & " 8
balanced driving system (with two universal wheels anc

two direct driving wheels), reversible DC motor, moto: 1
control and driving electronic equipment, high-resolutior
motion encoder and battery power supply, as well as
ultrasonic and anti-drop sensors The digital attitude Fig. 4. Experimental results of UWB static point positioning.
sensor is directly mounted on the NUC airborne computer.

position1(2,3) = Y

w;

for i = l:par num
beta = rand() * 2 * max_weight;
while beta > weight (ix+1)
beta = beta - weight(ix+1);
index = mod(index + 1,par_num-1);
end
temp particle(:,i) = particle(:,ix+1);

Convergence

Fig. 3. Particle filter process and experimental scene.
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TABLE I
UWB positioning error
Position World Results of | Average
Coordinates UWB Error
1 (2.0,3.0) (2.03,2.95) 0.04
2 (4.0,5.0) (3.93,5.03) 0.05
3 (6.0,8.0) (6.03,7.96) 0.035
4 (7.0,3.0) (6.96,3.03) 0.035
5 (8.0,6.0) (8.03,6.03) 0.03

In a 6mx4m open room, let the EPR move along a 4m
X 2m rectangular trajectory. The odometer trajectory,
UWB trajectory, and particle trajectory are shown in
Fig. 5. Because the EPR is in motion, the UWB coordinate
calculation has calculation time, which makes the sensor
data lag behind, leading to the increase of coordinate error.
The maximum error of the UWB coordinate is 23cm.
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Fig. 5. (a) Comparison between odometer track and real track. (b)
Comparison between UWB track and real track. (c) Comparison
between particle track and real track.
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The odometer trajectory, UWB trajectory and real
trajectory in the process of EPR rectangular motion
are shown in Fig. 6(a), and the errors in X and Y
directions are shown in Fig. 6(b).The particle filter algo-
rithm redistributes the particles at the turning point. The
experimental results are shown in Fig. 6(c). When the
EPR turns, the positioning error increases significantly.
The reason is that the particles are redistributed at
this time, and the distribution particles are reinitialized
within a certain range of the coordinate so that the error
increases. The maximum error of the x-axis is 8.1cm, and
the maximum error of the y-axis is 12.5cm.

The experimental results of the EPR in the ward are
shown in Fig. 7. The EPR patrols three hospital beds
in turn. Because of the existence of a non-line of sight
(NLOS) in the ward, the UWB positioning error increases,
and the singular value of positioning error appears. After
the particle filter algorithm, the error of coordinate data
with the real trajectory decreases but compared with the
test results in an open room, the error increases.
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Fig. 7. The track of inspection.

The positioning error of the EPR in the ward is shown
in Fig. 8. The maximum error is 16.2cm, and the average
error is 6.8cm.
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Fig. 8. Experimental results of UWB static point positioning.

V. CONCLUSIONS

In this paper, a positioning system based on the fusion of
UWB and an odometer based on particle filter is proposed.
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Through this system, the positioning and path tracking
of EPR can be realized, and high-precision positioning
can be achieved without expensive equipment such as
lidar, camera, or IMU. The experimental results show that
the positioning error is reduced to centimeter-level after
fusion, and the average error is 3.8cm in the open room and
6.8cm in the non-line of sight situation. Compared with
the traditional fusion method based on Kalman filter and
particle filter, because the accumulated error of odometer
can not be eliminated, the positioning error is about 10

C1m.

And with the increase of movement time, the error

increases gradually.It has good robustness to the nonlinear
motion of EPR which can not describe the state equation.

(1]
2]

(4]

[5]

[6]

References

Ahmed El-Rabbany, “Introduction to GPS: The Global Posi-
tioning System, Second Edition” , Artech, 2006.

F. Wang, J. Feng, Y. Zhao, X. Zhang, S. Zhang and J. Han,
“Joint Activity Recognition and Indoor Localization With WiFi
Fingerprints,” in IEEE Access, vol. 7, pp. 80058-80068, 2019.
L. Bai, F. Ciravegna, R. Bond and M. Mulvenna, “A Low Cost
Indoor Positioning System Using Bluetooth Low Energy,” in
IEEE Access, vol. 8, pp. 136858-136871, 2020.

M. J. Gallant and J. A. Marshall, “Two-dimensional axis
mapping using LiDAR,” IEEE Trans. on Robotics, vol. 32, no.
1, pp. 150-160, 2016.

H. Lv, L. Feng, A. Yang, B. Lin, H. Huang and S. Chen,
“Two-Dimensional Code-Based Indoor Positioning System With
Feature Graphics,” in IEEE Photonics Journal, vol. 11, no. 1,
pp. 1-15, 2019.

P. Nazemzadeh, D. Fontanelli, D. Macii, and L. Palopoli, “In-
door Localization of Mobile Robots through QR Code Detection
and Dead Reckoning Data Fusion,” IEEE/ASME Transactions
on Mechatronics, vol. 22, no. 6, pp. 2588-2599, 2017.

71

5 6.1
X directionim

X direcbionim

approaches. (b) Error of x-axis and y-axis. (¢) Particle redistribution during turning.

[7] L. Zhou, X. Bao and X. Chen, “A Calibration Method of

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

Navigation System Integrated with Kinect and Laser Scanner,”
2020 IEEE International Conference on Real-time Computing
and Robotics (RCAR), Asahikawa, Hokkaido, Japan, pp. 433-
439, 2020.

B. Hanssens et al., “An Indoor Variance-Based Localization
Technique Utilizing the UWB Estimation of Geometrical Prop-
agation Parameters,” in IEEE Transactions on Antennas and
Propagation, vol. 66, no. 5, pp. 2522-2533, 2018.

Y. -Y. Chen, S. -P. Huang, T. -W. Wu, W. -T. Tsai, C. -Y.
Liou and S. -G. Mao, “UWB System for Indoor Positioning
and Tracking With Arbitrary Target Orientation, Optimal
Anchor Location, and Adaptive NLOS Mitigation,” in IEEE
Transactions on Vehicular Technology, vol. 69, no. 9, pp. 9304-
9314, 2020.

J. Li, Y. Lei, Y. Cai and L. He, “Multi-sensor data fusion
algorithm based on fuzzy adaptive Kalman filter,” Proceedings
of the 32nd Chinese Control Conference, Xi’an, China, pp. 4523-
4527, 2013.

D. Feng, C. Wang, C. He, Y. Zhuang and X. Xia, “Kalman-
Filter-Based Integration of IMU and UWB for High-Accuracy
Indoor Positioning and Navigation,” in IEEE Internet of Things
Journal, vol. 7, no. 4, pp. 3133-3146, 2020.

M. Li, H. Zhu, S. You and C. Tang, “UWB-Based Localization
System Aided With Inertial Sensor for Underground Coal Mine
Applications,” in IEEE Sensors Journal, vol. 20, no. 12, pp.
6652-6669, 2020.

M. M. Olama, S. M. Djouadi, I. G. Papageorgiou and C. D.
Charalambous, “Position and Velocity Tracking in Mobile Net-
works Using Particle and Kalman Filtering With Comparison,”
in IEEE Transactions on Vehicular Technology, vol. 57, no. 2,
pp- 1001-1010, 2008.

Y. Wang, W. Zhang, F. Li, Y. Shi, F. Nie, Q. Huang. “A
UWRB Aided Particle Filter Localization For Scenarios with Few
Features,” UAPF, 20(23):6814, 2020.

Q. Tian, K. I. Wang and Z. Salcic, “A Resetting Approach
for INS and UWB Sensor Fusion Using Particle Filter for
Pedestrian Tracking,” in IEEE Transactions on Instrumentation
and Measurement, vol. 69, no. 8, pp. 5914-5921, 2020.

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on September 22,2021 at 03:25:26 UTC from IEEE Xplore. Restrictions apply.



