
Abstract—In the realm of mobile robot path planning, this
study integrates local path planning with the Frenét Frame,
presenting an adaptive path planning approach. Firstly, the A*
algorithm is employed to extract the shortest path from the map.
Subsequently, cubic spline interpolation is applied to the path
to generate a smooth global reference trajectory. Next, a cost
function based on lateral offset distance is introduced to enhance
the proximity of the trajectory to the reference trajectory, thereby
improving efficiency. Lastly, an adaptive sampling strategy is
incorporated to enhance the robot’s dynamic obstacle avoidance
performance. Experimental results validate the efficacy of the
proposed path-planning approach.
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I. INTRODUCTION

A mobile robot [1] is an autonomous machine capable
of navigating complex environments, encompassing functions
including perception, decision-making, control, and execution
[2]. Path planning [3] for mobile robots is a prominent
research subject extensively investigated within the realm
of robotics. It holds pivotal significance in augmenting the
intelligence and efficiency of mobile robots [4]. The prevailing
categorization involves two fundamental tiers: global path
planning and local path planning [5]. Global path planning
pertains to the identification of an optimal or near-optimal
trajectory between an initial point and a target destination
on a map. Prominent algorithms for global path planning
encompass the A* algorithm [6], Dijkstra’s algorithm [7], the
D* algorithm [8], and the Rapidly-Exploring Random Tree
(RRT) [9] algorithm. Aiming at the low search efficiency of
the A* algorithm, a bidirectional adaptive A* algorithm is
proposed in [10], which adopts a directional search strategy
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to improve the expansion efficiency, and uses adaptive step
size and adaptive weight strategy to improve the search speed
of the algorithm. In [11], given the shortcomings of the
child node search strategy of the A* algorithm, the jump
point search algorithm (JPS) was proposed, which effectively
improved the path search efficiency by filtering jump points.
Nevertheless, it’s worth noting that global path planning
approaches often center their attention solely on the overall
path connecting the origin and destination points, potentially
neglecting local contextual shifts experienced by the robot
along the course [12]. Consequently, during the execution
of a globally devised trajectory, the robot may encounter
challenges in adapting to local impediments, topographical
variations, and dynamic alterations. This underscores the need
for local path planning to enable real-time maneuvering under
such circumstances. Within the domain of local path planning,
the principal objective involves the identification of a secure
and efficient path within the immediate local environment to
accommodate robots. This strategy empowers them to fulfill
the overarching goals delineated by the comprehensive path-
planning endeavor. Widely employed techniques for local path
planning encompass the Dynamic Window Approach (DWA)
[13], Timed Elastic Band (TEB) [14], and Model Predictive
Control (MPC) [15], among others. These methods also suffer
from issues such as high computational complexity, limited
foresight, subpar dynamic obstacle avoidance effectiveness,
and non-global optimality.

This paper amalgamates robotic path planning with the
Frenét Frame, presenting an adaptable path planning technique
grounded in the Frenét Frame. The primary contributions
of this study are outlined as follows: 1) Utilization of the
partitioned optimal path intervals, as obtained through the
A* algorithm, as the reference line within the Frenét Frame
after cubic spline interpolation. This enhancement fosters road
smoothness while preserving asymptotic path optimality. 2)
Proposal of a cost function contingent on horizontal planning
distance for path planning within the Frenét Frame, aimed at
maintaining path proximity to the reference line and elevating
travel efficiency. 3) An adaptive sampling approach is intro-
duced, enabling real-time adjustments to sampling distance
and intervals when obstacles manifest along the reference line.
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This innovation contributes to the advancement of dynamic
obstacle evasion efficacy.

II. GLOBAL PATH PLANNING

The A* algorithm is presently considered the most efficient
direct search method for solving optimal paths in static maps.
It integrates elements of both breadth-first and depth-first
approaches, constituting a heuristic search algorithm. In the
context of this research, the A* algorithm is also employed for
generating global paths. The A* algorithm assesses the merits
of nodes using a cost function, wherein the cost function is
expressed as:

f(n) = g(n) + h(n) (1)

Where f(n) signifies the estimated cost from the starting
point to the endpoint traversing node n. g(n) represents the
actual cost, i.e., the factual distance covered from the starting
point to node n. Each search iteration is consistently updated
to a shorter distance, ensuring optimality from the origin to
node n. h(n) denotes the projected cost, characterizing the
anticipated direct distance between node n and the endpoint.
After deriving an optimal path from the initial to the terminal
point via the A* algorithm, a cubic spline interpolation is
applied to smooth the optimal path, thereby obtaining the
reference trajectory for subsequent local path planning. The
reference trajectory is partitioned into multiple small intervals,
with each interval being subjected to cubic spline interpolation.
The functional representation of cubic spline interpolation is
given by:

Si(x) = ai + bix+ cix
2 + dix

3 (2)

Where ai, bi, ci, di are the variables to be determined.
The resulting approximated optimal path after interpolation
becomes the reference trajectory for local path planning.

III. ADAPTIVE PATH PLANNING BASED ON THE FRENÉT
FRAME

A. Algorithm Principle

The Frenét Frame [16] is a frequently employed coordinate
system for delineating curved motion. It delineates positional
deviation from a reference line through longitudinal distance
s and lateral distance d. The utilization of the Frenét Frame in
path planning facilitates the division of the two-dimensional
motion quandary into two distinct one-dimensional optimiza-
tion predicaments, thus simplifying the complexities tied to
path planning and control. Path planning method based on
the Frenét Frame, as proposed by Werling [17]. The high-
dimensional optimization challenge of motion planning is dis-
sected into two autonomous optimization predicaments along
the horizontal and vertical axes using the Frenét Frame. This
approach accomplishes the separation of the motion planning
predicament and thereby mitigates the intricacy associated
with planning.

L(s(t), d(t)) = t⃗r(s(t)) + n⃗r(d(t)) (3)

Where L(s(t), d(t)) is the original high-dimensional op-
timization problem, and t⃗r, n⃗r represent the tangent vector

and normal vector, respectively, corresponding to a specific
point on the reference line during planning. The horizontal
and vertical independent optimization problems are derived
utilizing these two vectors. In the realm of autonomous
driving, given the relative absence of pronounced fluctuations
in vehicle lateral and longitudinal speed and acceleration as
perceived by humans, the concept of jerk(J) is introduced
to gauge the quality of the planned path. Given that the path
planning is partitioned into horizontal and vertical dimensions,
the minimization of the loss function can also be expanded
separately within these dimensions. In other words, given the
time interval T := t1 − t0, the initial state P0 = [p0, ṗ0, p̈0],
and the target state P1 = [p1, ṗ1, p̈1], find the path p(τ)
corresponding to the minimum cost Jt(p(t)):

Jt(p(t)) :=

∫ t1

t0

...
p 2(τ)dτ (4)

In [18], it has been demonstrated that solutions to any jerk
optimization problem can be accurately represented using a
quintic polynomial. Thus, for lateral motion, a quintic polyno-
mial interpolation method is employed. By specifying lateral
sampling range [dmin, dmax], prediction time [Tmin, Tmax],
and sampling interval [△d,△t], a set of planning trajectory
curves can be determined for lateral motion. The lateral cost
associated with each alternative curve is calculated by design-
ing a loss function tailored to lateral motion. Similarly, for
longitudinal motion, a quartic polynomial interpolation method
is utilized. By providing the target speed for longitudinal
sampling, prediction time [Tmin, Tmax], and sampling interval
[△v,△t], multiple planning trajectory curves for longitudinal
motion are derived. The longitudinal cost of each candidate
curve is computed using a loss function specifically designed
for longitudinal motion. Finally, by comprehensively consid-
ering both lateral and longitudinal motion costs, an integrated
approach yields a locally optimal trajectory.

B. Cost Function Based on Lateral Planning Distance

To ensure that the robot can traverse along the optimal
path obtained from the A* algorithm, this study presents a
cost function Cost(Jd) based on the lateral displacement d
within the context of the Frenét Frame. Cost(Jd) considers
the lateral offset between the robot’s present position and the
reference trajectory as a relatively significant cost factor. Its
purpose is to confine the robot’s motion to remain close to the
reference trajectory during the process of local path planning.
This constraint aims to enhance the efficiency and precision
of the overall motion planning. The cost function for lateral
distance is given as follows:

Cost(Jd) = α ·
Ti∑

n=0

d2i + β ·
Ti∑

n=0

(path curvaturei)
2

+ γ · Ti

(5)

Where d is the lateral displacement of each point along
the path concerning the reference trajectory, path curvaturei
represents the curvature value corresponding to each point
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on the path, and Ti stands for the current path’s prediction
time. The minimum prediction time is 1.0 seconds, and the
maximum prediction time is 2 seconds. The coefficients α, β, γ
are utilized as weighting factors to balance the impact of lateral
displacement, path curvature, and the expected planning time
on the path planning quality. Upon completing a round of path
planning, the selection of an optimal path for advancement and
subsequent rounds of path planning is necessary until reaching
the destination point or encountering an impasse. The filtering
criteria for the optimal path, denoted as best path, in each
round are defined as follows:

Pcost
min

= min(kd · Cost(Jd) + kv · ((target speed

− vs)
2 + Ti))

(6)

Where Pcost represents the path cost, and target speed, vs
are the desired speed and planned speed respectively. For each
path that meets the criteria, the cost is calculated, and the path
with the lowest cost is chosen as the optimal path for the
current round of path planning.

C. Adaptive Sampling Strategy

In traditional local path planning based on the Frenét
Frame, both lateral and longitudinal sampling distances are
often fixed. However, in the presence of dynamic obstacles,
fixed sampling distances might lead to the robot’s inability
to maneuver promptly, resulting in unexpected situations. To
address this issue, this paper proposes an adaptive planning
distance adjustment strategy, building upon the previously
defined cost function for lateral planning constraints.

d =


4D

1+e0.5(s−3D) , if D ≤ s < 5D
4D

1+e0.5(s−7.5D) , if 5D ≤ s < 10D

D, otherwise

(7)

Where D represents the collision detection radius of the
robot, s denotes the distance between the robot and the
obstacle along the current path, and d signifies the planning
radius obtained from the adaptive strategy. When there are
no obstacles on the reference trajectory, the local path plan-
ning employs a smaller lateral planning distance to suppress
excessive vehicle deviation from the reference trajectory. To
enhance path planning robustness and foresight, a longer
longitudinal planning distance is used. By increasing the
longitudinal planning distance, the robot can anticipate future
road condition changes over a greater distance, facilitating
faster obstacle detection and ensuring the robot’s movement
remains as close to the reference trajectory as possible, thereby
enhancing efficiency.

When the local path planning system anticipates the pres-
ence of dynamic obstacles on the reference trajectory, it
triggers the corresponding adaptive planning strategy. In such
scenarios, the algorithm progressively increases the lateral
planning distance while reducing the longitudinal planning
distance. This adjustment aims to find a suitable path that can
navigate around the obstacles. Once such a path is found, the
algorithm swiftly readjusts its strategy, employing a smaller

lateral planning distance to ensure the robot promptly returns
to the vicinity of the reference trajectory, maintaining overall
movement efficiency. Simultaneously, it moderately increases
the longitudinal planning distance to ensure the robot smoothly
returns to the reference trajectory after bypassing obstacles,
thus enhancing overall path planning smoothness and robust-
ness. The entire path-planning process of the adaptive strategy
is illustrated in Fig.1.

Start
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Decouple sampling
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Obstacle detection Adaptive Strategy

Path plan
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Fig. 1. Flowchart depicting path planning integrating adaptive strategy and
cost function

IV. EXPERIMENT RESULTS
To validate the effectiveness of the proposed algorithm in

this study, comparative experiments were conducted between
the Werling method and the method presented in this paper.
Both methods utilized the smoothed approximate optimal path
obtained using the A* algorithm as the reference line.

(a) (b)

Fig. 2. (a) represents the optimal path obtained through the A* algorithm,
while (b) depicts the asymptotically optimal path after undergoing smoothing
procedures.

The optimal path was extracted from the map using the
A* algorithm. Subsequently, a three-order spline interpolation
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was applied to the path followed by smoothing, resulting in
an asymptotically optimal trajectory. This trajectory serves as
the reference guide for subsequent local path planning, as
illustrated in Fig.2. The starting point is denoted by a yellow
square at coordinates (3, 4), while the endpoint is represented
by a green square at coordinates (11, 19).

A. The reference trajectory is obstacle-free
In this context, a comprehensive comparative analysis was

conducted on planning time, planning frequency, and the qual-
ity of the resultant path. The starting point of local planning
was established at a position in the Frenét Frame with a lateral
deviation of 0.5 and a longitudinal deviation of 0, denoted as
(0.5, 0). The initial velocity was set to 12 km/h, with both
lateral acceleration and jerk set to 0.
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reference line

Ours

Werling

Fig. 3. Depict the final paths obtained after the completion of path planning,
with the reference trajectory shown in blue, the proposed method in red, and
the Werling method in green.

TABLE I
ALGORITHM COMPARISON

Algorithm Running Planning RMSE
name times Frequency

Werling 11.547 88 0.50079
Ours 5.814 74 0.19846

In the case where the starting point is (0.5, 0), the result
of the Werling method is a path that is approximately parallel
to the reference line but does not closely follow it, in Fig.3.
This is mainly because the Werling method does not consider
the lateral deviation in the Frenét Frame as one of the
criteria for path planning. In contrast, in our approach, after
incorporating a cost function related to the lateral deviation,
the path can closely approach the reference line with enhanced
speed. Moreover, favorable outcomes are achieved in terms of
path deviation, execution time, and the number of planning
iterations, in Table.I.

B. The reference trajectory is obstructed by obstacles
This experiment introduces obstacles along the reference

line to simulate situations where obstacles may obstruct the

path during traversal in the same map scenario. Figure 4
illustrates the experimental setup with an obstacle placed at
(10, 14) on the reference line.
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Fig. 4. Map after adding obstacles

From Fig. 5(a), it is evident that the Werling method encoun-
ters path planning failure when faced with obstacles on the
reference line due to insufficient lateral planning distance. As
a consequence, all planned paths collide with the obstacles. In
contrast, the approach proposed in this paper capitalizes on the
benefits of an adaptive planning strategy. This strategy expands
the sampling range upon obstacle detection, resulting in the
successful design of a safe path that circumvents obstacles, as
shown in Fig.5(b).

TABLE II
ALGORITHM COMPARISON

Algorithm Running Planning RMSE
name times Frequency

Werling failed failed failed
Ours 6.092 76 0.46578

Subsequently, empowered by the synergistic effects of the
adaptive sampling strategy and the cost function predicated
on lateral deviation distance, the robot is endowed with the
capability to autonomously strategize an optimal trajectory,
seamlessly realigning with the reference line and culminating
in a successful termination at the destination point. The
consequential outcomes of the path planning endeavor are
meticulously tabulated and delineated in TableII.

V. CONCLUSION
This paper presents an adaptive planning algorithm based on

the Frenét Frame, suitable for the domain of mobile robotics.
In terms of reference line selection, the optimal path obtained
from the A* algorithm is subjected to a smoothing process
to derive an approximate optimal reference line. Additionally,
a cost function dependent on lateral deviation distance is in-
troduced to govern the robot’s trajectory. Addressing potential
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(a)

(b)

dynamic obstacles on the reference line, an adaptive sampling
strategy is proposed, facilitating obstacle avoidance through
the adjustment of sampling distances under varying circum-
stances. Through empirical validation, the effectiveness of the
proposed approach is evidenced in terms of planning time,

Fig. 5. (a) and (b) represent the scenarios when obstacles are present on the
reference line, comparing the Werling method and the method proposed in
this paper, respectively. Solid black dots represent obstacles, and black dashed
circles at a fixed distance from the obstacles depict the collision zones, with
a region radius denoted as the Collision Radius. The red curves in the figures
signify the optimal paths, the gray curves represent collision-encountering
infeasible paths, and the blue curves represent qualified paths.
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