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Optimization-Based Single Anchor UWB
Positioning System for Mobile Robots
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Abstract— In recent years, ultra-wideband (UWB) technology
has found extensive applications in indoor positioning systems
(IPS). However, a significant challenge for achieving low-cost
positioning solutions is the requirement of three or more anchors
in most existing UWB positioning methods. In this article,
we propose a method that achieves mobile robot localization
using only a single anchor. To solve for the initial positioning of
the robot, we construct a factor graph composed of multiple
sets of odometry position and UWB distance measurements,
which is then solved through graph optimization. The robot’s
tracking problem can be transformed into solving a system of
equations with inequality constraints. We propose an adaptive
trust region algorithm for solving a system of equations jointly
composed of preprocessed UWB distance measurements, odom-
etry increments, and kinematic constraints. The trust region
radius is adaptively adjusted according to the robot’s motion
model, leading to the iterative determination of the robot’s
optimal position. Experimental results demonstrate that this
system achieves a high level of localization accuracy.

Index Terms— Graph optimization, mobile robot, single
anchor, trust region.

I. INTRODUCTION

STATE estimation stands out as a critical module in
the navigation applications of mobile robots. Achieving

high-precision localization indoors, where the use of global
satellite navigation systems [1] is not feasible, remains a
challenging task. Currently, mainstream indoor positioning
systems (IPS) [2] include wireless local area network, radio
frequency identification (RFID), ultrasonic, Bluetooth, inertial,
and ultra-wideband (UWB). Among these, RFID, ultrasonic,
Bluetooth, and UWB are beacon-based positioning meth-
ods. Generally, RFID and Bluetooth can achieve meter-level
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positioning accuracy, while Ultrasonic and UWB can reach
decimeter-level accuracy. However, higher positioning accu-
racy often comes at the cost of higher deployment expenses,
which means more beacons or anchors are required. As UWB
is one of the most widely used and highest precision IPS
available today, studying single-anchor UWB positioning sys-
tems is of significant importance.

However, in traditional single-anchor UWB positioning
schemes, achieving higher localization accuracy typically
involves higher hardware costs (such as antenna arrays) and
deployment costs (e.g., environmental mapping). Therefore,
the goal of this study is to achieve higher localization accuracy
with a more cost-effective solution. To this end, we adopted a
two-stage approach, dividing the single-anchor UWB position-
ing system into two phases to enable real-time tag localization.
The first phase involves the derivation of the initial coordinates
of the tag, while the second phase utilizes the solution from
the first phase as the initial value for the tracking algorithm,
facilitating continuous tracking of the tag.

The primary objective of this study is to achieve position
estimation for a mobile robot in a single-anchor UWB posi-
tioning system through optimization methods. In our previous
work, we investigated methodological approaches such as
Kalman filtering (KF) [3] and particle filtering (PF) [4] in
multianchor UWB positioning systems, as well as an improved
PF localization method in a single-anchor UWB positioning
system [5]. In contrast, the optimization method proposed in
this article allows for a higher precision in position estimation.
Fig. 1 illustrates the single-anchor UWB positioning system
based on optimization methods.

In the first phase, we construct a factor graph consisting of
multiple sets of odometry position and UWB distance mea-
surements. The initial position of the robot are then determined
through graph optimization. In the second phase, we formulate
a system of equations by combining preprocessed UWB
distance measurements, odometry increments, and kinematic
constraints. Subsequently, an adaptive trust region algorithm
proposed in this article is employed to obtain the optimal
solution for this system with inequality constraints. Thus,
we transform the problems of initial position solution and
continuous tracking in the single-anchor positioning system
into solving optimization problems.

In summary, the contributions of this article are listed as
follows:

1) In the initial position solution phase, we constructed
a factor graph using odometer position and UWB dis-
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Fig. 1. Framework of a single-anchor UWB positioning system based on an
optimization method.

tance measurements. By employing graph optimization
techniques, we determined the optimal solution, thereby
obtaining a higher precision initial position for the
mobile robot. This advancement further enhances the
accuracy of the single-anchor UWB positioning system.

2) Due to the multipath effect, UWB distance measure-
ments are prone to errors, which can further impact
positioning accuracy. Therefore, during the tracking
phase, KF is applied to preprocess UWB distance mea-
surements, mitigating the errors caused by the multipath
effect. This preprocessing improves the accuracy of the
observations, thereby enhancing the precision of the
optimization method and reducing the error in position
estimation.

3) We introduced an adaptive trust region algorithm. This
algorithm leverages kinematic constraints to confine the
solution space of the optimization method. Additionally,
the trust region’s radius is adaptively adjusted based
on the motion model of the mobile robot, achieving
high-precision localization for the mobile robot.

The remaining structure of this article is organized as
follows. Section II provides a summary of relevant work on
single-anchor UWB positioning systems. Section III intro-
duces the trust region algorithm. Section IV outlines the
proposed methodology. Experimental validation and discus-
sions are presented in Section V, while Section VI concludes
this article.

II. RELATED WORKS

The single-anchor UWB positioning system primarily
employs three methods: an antenna array, multipath compo-
nent (MPC) measurement, and two-stage positioning method.
The use of antenna arrays allows for the joint estimation of
the angle of arrival and time of arrival of the signal. This
method conducts both range estimation and angle estimation
at the anchor to locate the tag, which is typically used in
multiagent cooperative positioning systems [6], visual inertial
odometry [7], and 3-D target localization [8], [9]. In contrast,
the latest research on the MPC method [10], [11] does not
require any time-consuming setup phase, as it does not necessi-
tate prior calibration, training, or position estimations (neither
fingerprint-based [12] nor learning algorithm-based [13]).
During the measurement phase, no additional external infor-
mation is needed, such as prior position estimates or multiple

antennas. The only required external information is a floor
plan of the localization environment, which should depict
the geometry of the building where the system is installed.
However, in scenarios where a floor plan cannot be provided
(e.g., outdoor or open indoor environments), the MPC method
becomes ineffective. Therefore, this article focuses exclusively
on the two-stage positioning method. The specific related work
is as follows.

A. Initial Position Solution

In single-anchor UWB positioning systems, initial position
solution relies on trilateration, a distance-based positioning
technique. Trilateration is based on the principle of calculating
a unique point using measurements from three circles [14].
The basic concept involves selecting at least three known
points in space and measuring the distances from the target
object to these points. Using this distance information, a set
of spheres with known points as centers and distances as radii
is constructed. The target object is located at the intersection
of these spheres, as its distance to each known point equals
the radius of the corresponding sphere. For instance, in [15]
and [5], equations are formulated using three sets of UWB
distance measurements, and the coordinates of the anchor are
determined using the least squares method.

To further enhance the accuracy and reliability of the
solution, employing more known points (four or more) and
utilizing optimization methods can be advantageous. For
example, Guo et al. [16], [17] investigated a relative local-
ization algorithm for drones. In the initial phase, a drone is
required to maintain static hovering as a beacon (akin to a fixed
anchor), allowing for the determination of the initial coordi-
nates of other drones relative to the beacon. They employed
multiple sets of UWB distance measurements to construct an
error function and utilized the Gauss–Newton method [18]
for solving. Nguyen et al. [19] proposed a tightly coupled
fusion method involving a monocular camera, IMU, and
a single unknown UWB anchor. The Levenberg–Marquardt
method [20], [21] was employed to solve for the coordinates
of the unknown anchor. Penggang et al. [22], aiming for
single-anchor positioning in multiroom and multicorridor sce-
narios, also utilized optimization methods for anchor position
determination. They initially solved for the anchor’s initial
values through three sets of UWB distance measurements
and subsequently optimized the anchor’s coordinates with a
substantial number of additional UWB distance measurements
to achieve more precise results.

B. Tracking

In the tracking phase of a single-anchor UWB positioning
system, the current mainstream solution involves employing
filtering algorithms for robust tag localization. In solutions
based on the KF, Batista et al. [23] successfully estimated the
system’s state using the classical KF. Cao et al. [24] proposed
a method that combines nine-DOF IMU and UWB for velocity
estimation, employing the Extended Kalman Filtering (EKF)
algorithm for tracking tasks. Penggang et al. [22] went a step
further by incorporating six-DOF IMU for target localization.
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Similarly, in the relative localization algorithm studied by
Guo et al. [16], [17], the EKF was utilized for the state
estimation of drones.

The utilization of PF for pedestrian localization in a
single-anchor UWB positioning system was first introduced
by Tian et al. [25]. They initially proposed a fusion method
of IMU and UWB based on PF [25]. This approach solely
relies on UWB distance measurements between mobile node
and anchor to achieve Pedestrian Dead Reckoning (PDR).
Building on this research, they later proposed a method to infer
the unknown positions of UWB anchor through PDR position
estimation and triangulation [15]. Furthermore, addressing the
drawbacks of PF in PDR, they introduced a new particle
reset method [26], resolving issues related to track lost dur-
ing localization. Additionally, to mitigate errors caused by
nonline-of-sight (NLOS) in UWB, they proposed an adaptive
UWB ranging uncertainty model [27], enhancing the overall
positioning accuracy.

III. PROPOSED METHOD

A. Overview

In this study, we employ an optimization method to estimate
the robot’s position. We define the anchor’s position as the
origin of the global coordinate system. The power-on position
of the mobile robot is designated as the origin of the robot
coordinate system, and the robot coordinate system is aligned
with the global coordinate system through rotation transfor-
mation [5]. The specific implementation of a single-anchor
UWB positioning system is illustrated in Fig. 2. It is primarily
divided into three modules: initialization, preprocessing, and
solving. During the initial position solution phase, the initial-
ization module is utilized to acquire the robot’s initial global
coordinates. Throughout the tracking phase, the preprocessing
and solving modules collaborate to determine the real-time
optimal position of the robot.

In the initialization module, we use the
Levenberg–Marquardt method [20], [21] to solve the
factor graph constructed from odometry position and UWB
distance measurements. Through coordinate transformations,
we obtain the initial global coordinates of the robot.
In the preprocessing module, the original UWB distance
measurements are preprocessed using KF [28] based on the
robot’s motion model, resulting in highly accurate distance
values. In the solving module, we utilize the proposed
adaptive trust region algorithm to solve the optimal position
of the robot, ensuring robust and high-precision continuous
tracking.

In Sections III-B–III-D, the details of the initialization mod-
ule, preprocessing module, and solving module are described.

B. Initialization

In the single-anchor UWB positioning system, achieving
continuous tracking requires solving for the initial global
coordinates of the robot. The accuracy of the initial global
coordinates can significantly impact the error of the posi-
tioning system. The process of solving for the initial global

coordinates can be described as a least-squares optimization
problem.

The traditional method for solving initial global coordinates
is through triangulation. This method entails formulating a
system of equations by amalgamating odometry position from
three distinct lines with their corresponding UWB distance
measurements. Although the least-squares method can be used
to estimate the optimal position with the least error, relying
solely on three observations cannot guarantee the accuracy of
the robot’s initial global coordinates. Therefore, this method
still has significant limitations and inaccuracies.

Building upon the triangulation method, this study con-
structs an error function using all the odometry position and
UWB measurements among the three sets of coordinates, and
subsequently solves this error function. Thus, the original
problem of solving three sets of equations is transformed into
an optimization problem of multiple sets of error functions.
This approach significantly enhances the accuracy of coordi-
nate estimation. The least-squares optimization problem can
be described as follows:

X̂ = arg min
X

n∑
i=1

∥e(X i , Z i )∥
2 (1)

where e(·) represents the error between the state variable X i

and the observation variable Z i . X̂ represents the optimal state
that minimizes the sum of squared errors of the error functions.

The problem of solving the initial global coordinates of a
robot is fundamentally a problem of coordinate transformation
between the robot coordinate system and the global coordinate
system. Then, the initial global coordinates are solved through
the coordinate transformation matrixx̂ i

ŷi

1

 =
cos θ − sin θ u

sin θ cos θ v

0 0 1

 ·
xi

yi

1

 (2)

where (u, v) represents the coordinates of the origin of the
robot coordinate system in the global coordinate system (the
transformation to be solved), θ represents the rotation angle
of the robot coordinate system relative to the global coor-
dinate system (which is 0 in this article), (xi , yi ) represents
the coordinates in the robot coordinate system, and (x̂ i , ŷi )

represents the optimal position in the global coordinate system.
The solution process is shown in Fig. 3. First, assume that

the robot coordinate system coincides with the global coordi-
nate system. And set the robot’s initial global coordinates as
the odometer position. The error function is

e(X i , Z i ) =
√

xi
2 + yi

2 − Z i . (3)

Because each UWB distance measurement can get an error.
Therefore, an optimal transformation matrix [u, v] between
coordinate systems can be found to minimize the error.

In this article, the method based on graph optimization is
used to solve the initial global coordinates of the robot. Take
[u, v] in the transformation matrix as the vertex (optimization
variable), the UWB distance measurements as the unary edge
(observation equation), and e(X i , Yi ) as the error of the edge.
Finally, the Levenberg–Marquardt method is used to solve the
problem.
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Fig. 2. Illustration of a positioning system based on optimization methods. We divide the initial position solution phase and tracking phase into initialization
module, preprocessing module, and solving module.

Fig. 3. Process of constructing factor graphs. The blue circle represents
the estimated distance between the robot and the anchor as calculated by the
odometry. The green circle represents the real distance between the robot and
the anchor measured by UWB.

C. Preprocessing UWB Measurements With Kalman Filter

The error in UWB distance measurements has a significant
impact on the accuracy of a single-anchor UWB positioning
system. Therefore, it is necessary to apply filtering techniques
to the UWB distance measurements. In this study, the robot’s
odometry motion model is employed to estimate the robot’s
current position. The distance between this estimated position
and the anchor is the predicted value. By filtering the predicted
values with the UWB distance measurements, the optimal
distance between the anchor and the robot is obtained.

The prior estimated distance d ′i is given by

d ′i =
√

(x̂ i−1 +1x)2 + (ŷi−1 +1y)2. (4)

The prior estimation covariance is given as

P ′i = APi−1 AT
+ Q (5)

where Q is the covariance of the process noise. Due to the
changes in UWB measurements between consecutive frames
being minimal, simplifying it to a static model, the state
transition matrix A = 1.

The Kalman Gain is given by

K =
P ′i H T(

H P ′i H T + R
) (6)

where R is the covariance of measurement noise. Since the
observed value (UWB measurement) directly corresponds to
the state value (distance), the observation matrix H = 1.

The optimal estimation is given by

d̂ i = d ′i + K
(
Z i − Hd ′i

)
. (7)

The covariance of the posterior estimation is

Pi = (1− K H)P ′i . (8)

During the initial entry into the tracking phase, the KF
inputs the optimal coordinates (x̂ i−1, ŷi−1) from the previ-
ous time step, which are derived during the initial position
solution phase. In subsequent entries into the tracking phase,
(x̂ i−1, ŷi−1) are the solutions obtained by Section III-D adap-
tive trust region algorithm.

D. Solving With Adaptive Trust Region Method

Assuming the current coordinates of a robot are given by
X = (x, y). In an ideal scenario with no errors, the distance
between the assumed coordinates X and an anchor should be
equal to the optimal distance value d̂ i . The difference between
the assumed coordinates X and the optimal coordinates from
the previous time step (x̂ i−1, ŷi−1) should satisfy the odometry
increments 1x and 1y. Based on this, we can formulate a
system of quadratic equations.
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Fig. 4. Solution process with inequality constraints. The green circle
represents the predicted coordinates obtained by the odometry increment (the
initial value of the solution). The blue rectangle represents the trust region
radius (solution range). The yellow curve represents the optimal distance
value.

The observation equation can be expressed as

X (1)2
+ X (2)2

= d̂ i
2
. (9)

The prediction equation can be expressed as (X (1)− x̂ i−1)
2
+ (X (2)− ŷi−1)

2
= 1x2

+1y2

X (2)− ŷi−1 =
1y
1x
· (X (1)− x̂ i−1).

(10)

The above system of equations constitutes a nonlinear
optimization problem. The incremental data from the odometry
is highly accurate over short periods, allowing the predicted
coordinates to be used as initial values for equation solving.
However, due to the significant impact of observation errors
on the accuracy of the solution, it is necessary to introduce a
constraint ε to the system of equations{

x̂ i−1 +1x − ε ≤ X (1) ≤ x̂ i−1 +1x + ε

ŷi−1 +1y − ε ≤ X (2) ≤ ŷi−1 +1y + ε.
(11)

By introducing ε, the solution process is constrained to
occur only in the vicinity of the highly accurate predicted
position, as depicted by the blue box in Fig. 4. This trans-
formation effectively converts the localization problem into
solving equations with inequality constraints.

The trust region algorithm derives iterations by iteratively
solving the corresponding optimization problem within a
bounded region [29]. The trust region approach is strongly
associated with approximation. Assuming we have a current
guess xk for the solution to the optimization problem min f (x),
we can construct an approximate model f (xk + s) around the
current point. The solution of this approximate model can
then serve as the next iteration point. However, in the trust
region algorithm, the approximate model is only “trusted” in
a certain region around the current iteration. The region that
the approximate model is trusted is called the trust region
�k , and the range of this region is called the trust region
radius 1k . �k is adjusted at each iteration. Therefore, the
trust region algorithm can effectively solve problems with
inequality constraints.

The trust region can be represented as

�k = {x ∈ Rn
|∥x − xk∥ ≤ 1k}. (12)

Algorithm 1 Adaptive Trust Region Algorithm
Require:

f (·)← according (9) (10)

X = (x̂ i−1 +1x, ŷi−1 +1y)

η1, η2, ϵ

Ensure:
1: // Calculate trust region radius
2: ε← according (19)

3: 1← ε

4: while 1 do
5: // Calculate Jacobian matrix and Hessian matrix
6: g← ∇ f (X), H ← ∇2 f (X)

7: // Determine whether convergence
8: if ∥g∥ < ϵ then
9: break

10: end if
11: // Solving the optimal solution of the subproblem
12: min φk(s)← according (14)

13: // Calculate trust region fidelity
14: r ← according (15)

15: // Update X and 1

16: if r ≤ η1 then
17: 1← τ11

18: else
19: X ← X + s
20: if r ≤ η2 then
21: 1← τ11

22: else
23: 1← τ21

24: end if
25: end if
26: end while
27: // Output optimal coordinates
28: (x̂ i , ŷi )← X

The approximate model can be represented as

f (xk + s) = f (xk)+ gT
k s +

1
2

sT Hks (13)

where gk = ∇ f (xk) is the Jacobian matrix of f at xk , and
Hk = ∇

2 f (xk) is Hessian matrix of f at xk .
The subproblem of trust region algorithm is defined as min

s∈Rn
φk(s) = gT

k s +
1
2

sT Hks

s.t. ∥s∥2 ≤ 1k .
(14)

After solving the solution of the subproblem, it is necessary
to evaluate whether the optimal solution sk is acceptable. Trust
region fidelity is defined as

rk =
Predk

Aredk
(15)

where Predk = φk(0)− φk(sk) is the predicted reduction, and
Aredk = f (xk)− f (xk + sk) is the actual reduction. rk is used
to measure the consistency between the approximate model
and the objective function, so as to decide whether to adjust
the new trust region radius.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 14,2024 at 06:20:51 UTC from IEEE Xplore.  Restrictions apply. 



7510111 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Fig. 5. Experimental site and map. The green rectangle is the Aimibot’s motion area.

The xk+1 and 1k+1 can be updated as follows:

xk+1 =

{
xk, rk ≤ η1

xk + sk, rk > η1
(16)

1k+1 =

{
τ11k, rk ≤ η2

τ21k, rk > η2.
(17)

The typical values for the constants η1, η2, and τi are η1 = 0,
η2 = 0.25, τ1 = 0.5, and τ2 = 2 [30]. Repeat the above steps
until the sequence of iterates {xk} converges.

To enhance the robustness of the positioning system, this
article proposes an adaptive trust region algorithm. This
algorithm dynamically adjusts the trust region radius by evalu-
ating the errors between predicted values and observed values.
The evaluation metric can be expressed as follows:

δ =

√
(x̂ i−1 +1x)2 + (ŷi−1 +1y)2 − d̂ i . (18)

The trust region radius is selected based on the evaluation
metric δ

ε =


α, a < δ

α · δ, β/α ≤ δ ≤ α

β, δ < β/α

(19)

where 0 < β < α. Therefore, the value range of the trust
region radius is fixed between [β, α].

The adaptive trust region algorithm pseudo code is shown
in Algorithm 1.

IV. EXPERIMENTS

A. Devices and Experimental Setup

The Aimibot mobile robot platform was utilized for this
experiment. Aimibot employs a two-wheeled differential drive
system and is equipped with reversible dc motors, high-
resolution motion encoders, and batteries. Additionally, it is
outfitted with an ultrasonic sensor, an anti-drop sensor,
an IMU, and a Jetson Nano onboard computer.

In this experiment, we use the DW1000 UWB chip and
STM32F1 minimum system as a node. The STM32 commu-
nicates with the DW1000 via the SPI protocol and controls the
DW100 for data transmission and reception. After obtaining
the corresponding timestamps, we calculate the difference in

Time of flight (TOF) and get the average TOF. Multiply it by
the flight speed. We then get the distance. As the DW1000 has
some systematic errors, the DW1000 needs to be externally
calibrated using the method in [4] for both DW1000 chips.
Finally, the distance data are brought into the calibration for-
mula to obtain the exact distance between the two nodes. The
mobile node communicates with the Aimibot through RS232.
The processing platform of the Aimibot reads the distance data
obtained from the tag. We utilized the robot operating system
(ROS) to publish topics for UWB measurement distances
and odometry position. A terminal server within the same
local network is subscribed to topics published by Aimibot,
recording all data using MATLAB.

The experiment is divided into two parts: the initial position
solution experiment and the tracking experiment. The exper-
iment took place in the exhibition hall of Building C1 at
the School of Robotics, Hunan University. Anchor and tag
were positioned at the same height, 1 m above the ground.
This elevation surpasses all obstacles within the Aimibot’s
operational area, effectively eliminating the impact of NLOS
communication issues between anchor and tag. We employed
the open-source mapping algorithm Gmapping [31] in ROS
to map the entire experimental area. To ensure experimental
convenience, we overlaid the map coordinate system with the
global coordinate system. The experimental site and map are
illustrated in the Fig. 5.

B. Results and Discussions

To validate the effectiveness of the initial position solution,
we had the Aimibot move randomly from different initial
positions within the motion area of the experimental site.
When the motion trajectory of Aimibot satisfies the condi-
tions for solving triangulation with three sampled points [15],
we combine all the UWB distance measurements and odom-
etry position between these three sampled points using (7)
and (9). Subsequently, we employ the Levenberg–Marquardt
method from the open-source graph optimization framework
g2o [32] for solving. Finally, coordinate transformation is
performed using (8).

We conducted a comparative analysis between the graph
optimization method and triangulation method, and the trajec-
tories are depicted in Fig. 6. It is evident that as the number of
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Fig. 6. Trajectories and solutions comparison between the optimization method and the triangulation method during the initial position solution phase.
(a)–(c) Correspond to the solutions obtained using the triangulation method. (d)–(f) Depict the solutions achieved through the optimization method.

TABLE I
ERROR FOR INITIAL POSITION SOLUTION

edges in the graph optimization method increases, the iteration
count also rises. However, convergence conditions can be
achieved with approximately ten iterations. The error results
are presented in Table I. Under the same motion trajectory, the
initial position solution accuracy based on the graph optimiza-
tion method is superior. The average error for the triangulation
method is 0.059 m, while the graph optimization method yields
an average error of 0.022 m. Experimental results indicate that
the optimization method achieves higher localization accuracy
by utilizing additional previously unused measurement data,
without requiring an increase in the trajectory length compared
to the triangulation method.

Subsequently, we conducted the tracking experiment.
As this experimental segment primarily focuses on comparing
the accuracy of tracking algorithms, it is crucial to ensure that
the initial values for different tracking algorithms are consis-
tent. We set the initial position for the tracking experiment at
(−5, −5).

The parameter settings for the adaptive trust region
algorithm are shown in the Table II. Here, α represents
the maximum radius of the trust region to prevent it from

TABLE II
PARAMETER SETTINGS

becoming excessively large (indicating the maximum error
typically encountered by the positioning system). β denotes
the minimum radius of the trust region to prevent it from
becoming too small (indicating the minimum error typi-
cally encountered by the positioning system). The parameters
η1, η2, τ1, τ2 were set to typical values [30].

To obtain the actual trajectory of the Aimibot, we installed
a high-precision laser radar on the Aimibot. We used the
open-source localization algorithm adaptive Monte Carlo
localization (AMCL) [33] in ROS to track the Aimibot in
real time. The initial position of the Aimibot was obtained
using a laser rangefinder to ensure the accuracy of AMCL.
AMCL is currently one of the most mature and accurate
indoor localization algorithms for mobile robots. Therefore,
in this study, we used the output of AMCL as the ground
truth trajectory of the Aimibot.

Multiple tracking experiments with varying trajectories were
conducted, as illustrated in the Fig. 7. It can be observed that
the adaptive trust region algorithm effectively tracks the robot.
At the same time, the cumulative error of the odometry is
effectively eliminated. The root mean square errors (RMSE)
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Fig. 7. (a)–(c) Comparison of the proposed method, odometer, and AMCL tracking results under different trajectories.

Fig. 8. Positioning trajectories of comparison experiment and ablation experiment. (a) Odometer. (b) PF. (c) DWBPF. (d) Propose method. (e) Propose
method without KF. (f) Propose method without trust region.

for odometry and the optimization method for the three
trajectories are 0.501/0.199, 0.241/0.162, and 0.372/0.215 m,
respectively.

Next, comparative and ablation experiments were con-
ducted. We controlled the Aimibot to traverse a predefined
closed path within the motion area for three complete cycles,
ultimately returning to the starting point of the motion.
In single anchor UWB positioning systems, the nonlinear
characteristics of UWB measurement uncertainties make PF
more suitable than KF or EKF [27]. Therefore, our com-
parative experiments focus primarily on comparing PF with
the proposed algorithm. We compared the traditional PF and
our previously proposed dynamic window-based PF (DWBPF)
[5]. Additionally, ablation experiments were conducted on
our proposed adaptive trust region algorithm by removing
the KF component (no KF) and the trust region component
(no region). The positioning trajectories are illustrated in the
Fig. 8.

1) Analysis of Positioning Accuracy: The absolute position-
ing errors of the three tracking algorithms are depicted in the
Fig. 9. The RMSE for the odometry is 0.841 m, for the PF
method is 0.345 m, for the DWBPF method is 0.268 m, and
for the optimization method is 0.219 m. It can be observed that

compared to PF, both DWBPF and the optimization method
exhibit higher accuracy. However, DWBPF’s trajectory shows
some jitter. On the other hand, our proposed method maintains
trajectory smoothness while ensuring positioning accuracy
comparable to DWBPF. This phenomenon arises because the
localization output in DWBPF is the average coordinates of
the highest-scoring particle set. Since the state transition of
particles is a stochastic process, the particle set can only
describe a certain range around the optimal coordinates of the
mobile robot. The center point of this range corresponds to the
optimal coordinates in DWBPF. In contrast, the optimization
method directly computes the coordinates that minimize the
error function, resulting in smoother trajectories compared to
DWBPF.

2) Analysis of KF Component: In the absence of the KF
component, the positioning trajectory of the optimization
method exhibited some errors. This is attributed to the KF
component’s ability to mitigate UWB distance measurement
errors, thereby enhancing the accuracy of observations input
into the trust region algorithm. Accurate observations con-
tribute to improved positioning accuracy. The UWB distance
measurement errors before and after KF filtering are depicted
in the Fig. 10.
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TABLE III
SINGLE-ANCHOR POSITIONING SCHEMES COMPARISON

Fig. 9. RMSE for PF, DWBPF, and the proposed method.

Fig. 10. UWB distance measurement errors before and after KF filtering.

3) Analysis of Trust Region Component: Without the trust
region component, the positioning trajectory displayed sub-
stantial errors. This is because, without the trust region, the
algorithm reduces to a general least squares optimization
method, iteratively searching for the solution that minimizes
error in the objective function. However, in a single-anchor
positioning system, the solution with the minimum error is not
necessarily the optimal position. An incorrect estimation of the
current position leads to erroneous initial values for subsequent
inputs into the algorithm. Since only odometry increments are
used in the prediction equations, incorrect initial values result
in inaccurate predictions, amplifying errors in subsequent
outputs. Consequently, this leads to uncorrectable errors in
the positioning trajectory. Hence, employing a trust region
algorithm with boundary constraints is essential.

4) Analysis of Time Cost: The average time for one iteration
of the adaptive trust region algorithm is approximately 0.01 s.
In contrast, the PF method takes about 0.005 s for one
iteration, exhibiting a speed nearly twice as fast as the adaptive
trust region algorithm. However, given the UWB ranging
frequency of around 3.57 Hz [5], it takes approximately
0.28 s to obtain one UWB distance measurement. This time
interval is significantly larger than the solving time of the
adaptive trust region algorithm. Therefore, despite the greater
computational complexity and time cost of the adaptive trust
region algorithm compared to PF, the former can still meet the
real-time localization requirements in a single-anchor UWB
positioning system.

Finally, our method was compared with existing
single-anchor positioning schemes, including the antenna
array, MPC measurement, and the two-stage positioning
method, as shown in the Table III. The first two schemes
require specific conditions, making them difficult to reproduce
with our current hardware (single antenna) and scenario
(unobstructed open indoor environment). Consequently,
we focused on the improvement in positioning accuracy as a
key comparison metric.

The MPC method, relying solely on UWB sensors, does
not have the original sensor’s positioning accuracy. Never-
theless, it attains high accuracy by processing environmental
information (e.g., constructing fingerprints or obtaining floor
plans), which introduces certain limitations. Moreover, both
the antenna array and MPC methods necessitate the initial
position of the anchor, a drawback when compared to the two-
stage method. It is clear that our method significantly enhances
positioning accuracy. Although there is still a gap in accuracy
compared with the method in [26], this method involves offline
processing and takes 2.77 s, which far exceeds our solution
time. Thus, our method demonstrates superior performance
within the two-stage positioning method.

V. CONCLUSION

In this article, we present an optimization method for a
single-anchor UWB localization system. This system achieves
high-precision tracking of a mobile robot solely based on
UWB distance measurements and the robot’s odometry. In the
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initial position solving approach of this article, a factor graph
is constructed using odometry position and UWB distance
measurements. Subsequently, the accurate initial position of
the mobile robot is determined through graph optimization
techniques. During the tracking phase, we initially prepro-
cess UWB distance measurements using KF. Subsequently,
the proposed adaptive trust region algorithm robustly tracks
the movement of the mobile robot. Experimental results
demonstrate the excellent positioning performance of the
optimization method in both the initial position solving and
tracking phases.

The methodology proposed in this article does not con-
sider applications in NLOS scenarios. Therefore, our future
work will focus on incorporating additional anchor points
or integrating NLOS detection and mitigation methods into
the optimization process to address the impact of NLOS on
positioning accuracy.
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