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Abstract— With the emergence of the COVID-19 pandemic,
more and more non-contact mobile disinfection robots have
appeared in the medical field, which have made great contribu-
tions to the fight against the epidemic. Aiming at the problems
of single disinfection method, single application scenario, low
degree of intelligence and lack of autonomous mobile disin-
fection in existing disinfection robots, this paper proposes and
designs a disinfection and epidemic prevention intelligent robot
called Aimi-Robot UVC, which is based on graph-optimized
slam algorithm to complete the localization and map creation
functions of the robot in the unknown environment. After
testing in the isolated single ward of the hospital, the real-
time localization accuracy reaches 0.04m, which provides high-
precision and high-reliability localization for the disinfection
robot in the hospital scene and has great practical significance
for the application of intelligent disinfection robots in epidemic
prevention and control.

I. INTRODUCTION

The outbreak of COVID-19 has now become a pandemic,

and mobile robots quickly participated in the fight against

the epidemic. From disinfection, transportation of medicines

and medical equipments, waste cleaning for temperature

measurement, mobile robots have been widely used in many

places [1]. Among them, mobile robots have made major

breakthroughs in the promotion and application of remedial

systems. On the one hand, mobile robots can protect med-

ical staffs and reduce the risk of infection of the medical

staffs. On the other hand, they can complete high-standard

disinfection and sterilization tasks, thereby alleviating the

pressure on medical staffs [2]. Despite the rapid development

of intelligent robot technology in recent years, epidemic

prevention robots need to complete specific tasks in com-

plex unstructured scenarios (for example, disinfection mobile

robots need to complete disinfection tasks autonomously

in complex environments in public places), which requires

epidemic prevention robots to have strong autonomy, real-

time and high flexibility. The biggest technical challenge is
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the ability to perceive the environment and obtain perceptual

information, so as to realize autonomous localization, naviga-

tion and control in a complex unstructured environment [3].

In order to ensure the smooth progress of the disinfection

task, the real-time position information of the disinfection

robot system needs to be tracked at all times, and the

autonomous localization technology is particularly important.

Autonomous localization technology is a technology for

precise localization of the robot’s position, and it is also the

basis for the robot to realize autonomous mobile navigation

[4].

Although there are many kinds of localization technolo-

gies, most of them either have many limitations in practical

applications or are too expensive to be popularized. For

example, GPS cannot be used in indoor and heavily blocked

outdoor environments, and the localization accuracy is low;

the cost of high-precision inertial navigation systems is

too high; localization schemes based on wireless signals

(WiFi, Bluetooth, UWB) need to be arranged in advance for

use scenarios, etc. [5]. The laser radar-based simultaneous

localization and mapping (SLAM) technology accurately

measures the angle and distance of obstacles, does not

require pre-arrangement of the scene, can integrate multiple

sensors, work in poor light environments, and can easily

generate the advantages of navigation environment map

and other advantages have become an indispensable new

technology in the current localization scheme [6]. SLAM

systems are increasingly deployed on robots that operate

in unstructured environments, or robots that cannot access

reliable external localization infrastructure [7]. In order to

achieve high intelligence and complete specific epidemic pre-

vention and control tasks in complex unstructured scenarios

such as hospitals, slam technology is a necessary condition

for epidemic prevention robots. The earliest laser slam filter

localization algorithm is based on the Kalman Filter (KF)

mobile robot localization algorithm, but due to its filter has

many restrictions, such as the application system must be

linear, it is difficult to meet the application requirements of

most non-linear practical environments. Therefore, on this

basis, slam localization algorithms such as Extended Kalman

Filter (EKF) [8], Monte Carlo Localization [9], and Adaptive

Kalman Filter Localization have emerged. However, because

filtering algorithms are based on recursive calculations, only

the robot pose and map information at two adjacent moments

are estimated, and the update efficiency decreases with the

increase of the map scale, linearization, lack of closed-

loop detection, and poor adaptability, which are difficult to

apply. In a complex environment with large-scale, multiple

loops, long distances and other wide. Therefore, a novel
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method based on graph optimization is proposed to solve

the slam problem of large-scale scene mapping. In robotics,

most graph-based slam techniques depend on local search

methods for nonlinear optimization to estimate poses of

the autonomous agent and positions of observed landmarks

[10]. Graph-based SLAM is usually divided into the front-

end and back-end. The front-end constructs the nodes and

edges of the graph depending on the observation values

and system constraints. The back-end applies optimization

techniques to complete the graph optimization [11]. The

advantage of this is that incorrect data associations can be

rectified, and pose errors and map drift can be lowered. Since

the graph-based slam method utilizes all the observations

information to optimize the robots accomplish trajectory and

environment, we can get a globally consistent trajectory and

map [12]. Among them, the most representative google open

source cartographer [13], in the realization of 2D slam, it

can generate a two-dimensional grid real-time map with an

accuracy of 5cm, use loop detection to optimize the pose

of the submap, and eliminate the problem in the process of

mapping. Accumulate errors while achieving a balance be-

tween the amount of calculation and real-time performance.

The lidar-based localization method is usually used for the

localization of mobile robots due to its high accuracy and

robustness to illumination and viewpoint changes. Among

them, the most widely used method is amcl localization

based on particle filtering [14]. However, the amcl algorithm

still has a problem: when the robot is in a complex and un-

structured environment with dynamic obstacles and uneven

ground, the best pose estimation algorithm is the center of

the particle swarm instead of the best match between the

map and laser scanning. Even after convergence, localization

accuracy and robustness cannot be guaranteed. In addition,

once the error between the particle swarm and the actual

attitude is large, it takes a certain amount of time to perform

self-calibration, which may even cause serious localization

deviation [15].

In addition to providing a slam framework, cartographer

can also be used as a map self-location technology similar to

amcl. By studying the pure-localization algorithm of cartog-

rapher and optimizing the localization algorithm parameters,

the accuracy and robustness of the autonomous localization

of the disinfection robot in the complex non-structural envi-

ronment are solved, which provides high precision and high

reliability for the disinfection robot to operate in the hospital

scene.

II. ALGORITHM STRUCTURE ANALYSIS

The primary idea of cartographer [12] is to use closed-

loop detection to reduce the cumulative error in the mapping

process. The algorithm as a whole can be divided into two

parts: the first part is called local slam, which establishes

and maintains a series of submaps through a frame of laser

scan, and the submap is a series of grid maps. When there is

a new laser scan, it will be inserted into the best position in

the submap through ceres scan matching. However, submap

will have the problem of error accumulation. Therefore,

the second part of the algorithm called global slam, is

to perform closed-loop detection through loop closure to

eliminate accumulated errors. When the construction of a

submap is completed, no new laser scan will be inserted into

the submap, the algorithm will add the submap to the closed-

loop detection. The algorithm structure diagram is given in

Figure 1.

Fig. 1. Cartographer algorithm structure block diagram.

A. Local Slam

In 2D SLAM, the three parameters of translation (x,y) and

rotation ξθ obtained by lidar scanning can determine the pose

of mobile robot ξ = (ξx,ξy,ξθ ). Record the data measured

by the lidar sensor as H = {hk}k=1,...,K ,hk ∈R
2. The initial

laser point is 0 ∈ R
2. The pose transformation of the laser

radar scanning data frame mapped to the submap is denoted

as Tξ , which can be mapped to the submap coordinate system

by equation (1):

Tξ p =

(
cosξθ −sinξθ
sinξθ cosξθ

)
︸ ︷︷ ︸

Rξ

p+

(
ξx
ξy

)
︸ ︷︷ ︸

tξ

(1)

Some continuous scans form a submap, and the submap

takes the form of a probability grid. When new scan data is

inserted into the probability grid, the state of the grid will

be calculated, and each grid has two states: hit and miss.

The grid points in each hits are assigned the initial value

M = Phit , and the grid points in each misses are assigned the

initial value M = Pmiss. If the grid point already has a P, use

the following equation to update:

odds(p) =
p

1− p
(2)

Mnew (x) = clamp(odds−1(odds(Mold (x)) ·odds(phit))) (3)

Before inserting scan into the submap, use the scan

matcher of the ceres library to optimize the pose ξ of scan,
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and turn the problem of solving scan pose into a problem of

solving nonlinear least squares.

argmin
ξ

K

∑
k=1

(
1−Msmooth

(
Tξ hk

))2
(4)

In the above equation, Tξ represents the pose transfor-

mation in the scan conversion to the corresponding submap

frame, and the pose conversion converts the scan point hk
from the scan to the submap frame. Smoothing function

Msmooth : R2 → R smoothly maps the probability value of

each scan point to the local subgraph, the goal is to maximize

the probability value of all scan points inserted into the scan,

and construct a nonlinear least square multiply the objective

function.

B. Global Slam

Since the lidar scan frame is only matched with the

current submap, the environment map is composed of a

series of submaps. As the number of submaps increases,

the cumulative error in the scanning matching process will

become larger and larger, so the sparse attitude adjustment

(SPA) to optimize the pose of all lidar data frames and

submaps. The pose of the lidar data frame when inserted into

the submap will be cached in the memory for closed-loop

detection. When the submap no longer changes, all scanned

frames and submaps will be used for closed-loop detection.

argmin
Ξm,Ξs

1

2
∑
i j

ρ(E2(ξ m
i ,ξ s

j ;Σi j,ξi j)) (5)

In the above equation, ρ is a loss function, which can

reduce the influence of outliers added to the optimization

problem on the system. Ξm = {ξ m
i }i=1,...,m,Ξs =

{
ξ s

j

}
j=1,...,n

,

respectively represent the pose of the submap and pose of

the scan frame under certain constraints. The relative pose

ξi j represents the matching position of the scanned frame j

in the submap i, and the associated covariance ξi j uses the

ceres library for feature estimation. The residual E of the

constraint can be calculated by equation (6):

E2
(
ξ m

i ,ξ s
j ;Σi j,ξi j

)
= e(ξ m

i ,ξ s
j ;ξi j)

T
−1

∑
i j

e(ξ m
i ,ξ

s
j ;ξi j),

e(ξ m
i ,ξ

s
j ;ξi j) = ξi j −

(
R−1

ξ m
i
(tξ m

i
− tξ s

j
)

ξ m
i;θ −ξ s

j;θ

)
. (6)

In addition, the branch and bound scan matching algorithm

is used to accelerate the process of closed-loop detection and

relative pose solving, determine the search window, use the

search method to construct the loop, and use the equation

(7) to search:

ξ � =
argmax
ξ ∈W

K

∑
k=1

Mnearest(Tξ hk) (7)

In the above equation, W represents the search window,

Mnearest is the extension from the nearest grid point of the

parameter in M to the corresponding pixel (R2), and using

the branch and bound method can efficiently calculate the

value of ξ �.

III. AIMI-ROBOT UVC

The overall system structure of the Aimi-Robot UVC, an

ultraviolet disinfection robot developed by us, is shown in

Figure 2. The robot system structure is mainly composed of

mini PC, underlying embedded controller (motor, encoder,

ultrasonic, imu, infrared sensor, etc.), sensors/other ROS de-

vices (depth camera, lidar, etc.), human-computer interaction

Fig. 2. Aimi-Robot UVC.
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interface and other components. The entire robot adopts the

mode of distributed control system, which is divided into

two parts: the upper control platform and the lower controller.

The bottom controller uploads all kinds of sensor information

(position, attitude, etc.) collected by the bottom layer to the

upper control platform through RS232 communication at the

frequency of 50 Hz. The upper layer relies on ROS [16] to

transmit the control command at the same rate through data

analysis, so as to realize the accurate control of the robot

[17]. Aimi-robot UVC can move flexibly and autonomously

in all directions, and has core technologies such as accurate

navigation and localization, autonomous planning of itinerant

disinfection path, automatic charging, etc. It has the functions

of temperature, carbon dioxide concentration, air quality

detection and multi-point infrared human body sensing. It is

equipped with ultraviolet disinfection lamp and disinfectant

spraying device to complete two kinds of disinfection in

the hospital ward at the same time. Workers only need to

complete the task configuration of the robot through the

human-computer interface before starting the robot, and set

the time, route, content, walking frequency and task planning

of the robot, the separation of human and machine is realized,

the contact of personnel is reduced and the risk of virus

infection is effectively reduced.

IV. EXPERIMENT AND ANALYSIS

In order to verify the effectiveness of the algorithm, the

test site of this experiment is an isolated single ward of the

hospital, and the physical picture of Aimi-Robot UVC is

shown in Figure 3. The hardware of the upper-level control

platform of this experiment is mainly Intel NUC, and the

system on the NUC is Ubuntu 16.04 and robot operating

system (ROS). The experimental program is mainly run

through ROS, and all experimental data are saved through

the rosbag command mechanism in ROS.

Fig. 3. Aimi-Robot UVC in hospital ward

A. Map Construction

Aimi-Robot UVC equipped with lidar, odometer, and IMU

will respectively use gammping algorithm and cartographer

algorithm to build maps in a single isolation ward of the

hospital, and the mapping effects are shown in Figure 4 and

Figure 5 respectively.

Fig. 4. Gammping algorithm mapping results.

Fig. 5. Cartographer algorithm mapping results.

In the process of mapping construction, Aimi-Robot UVC

was manually operated to rotate at high speed at P and P7

points. It can be seen from Figure 4 that the rotation at point

P lead to the obvious drift of some maps in the red box, while

Figure 5 is relatively stable. It can be seen from the above

that cartographer slam algorithm is better than gammping

slam algorithm in the same environment and situation.

B. Global Localization Experiment

As shown in the Figure 5, 10 way points are randomly

selected on the map to evaluate the global localization

robustness. AMCL and cartographer were used to test each

way point for 10 times. The global localization robustness

is evaluated by the cumulative localization success rate (the

average success rate of 10 way points). In order to verify

the global localization effect of amcl algorithm, the amcl

algorithm is used to carry out localization experiments on

the occupation grid constructed by cartographer. The global
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Fig. 6. Global localization process.

localization process is shown in Figure 6. In order to speed

up the convergence rate, an initial particle swarm is randomly

generated near the actual initial posture. The small red arrow

in Figure 6 represents an attitude particle, and the blue point

cloud is a laser scanning point cloud. Figure 6(a) shows the

initial state of the particle swarm. In order to accelerate the

convergence of localization, an approximate estimation of

the initial attitude of the robot is given. It can be seen from

the figure that many particles are generated near the initial

attitude estimation. Figure 6(b) and Figure 6(c) show that

when the robot moves, the particles gradually converge, and

the convergence result is point A in Figure 5. It can be seen

from the blue point clouds in Figure 6(b) and Figure 6(c)

that the laser scanning points are not well aligned with the

obstacles. This is because amcl algorithm uses the weighted

average pose of particle swarm optimization as the estimated

pose, resulting in a certain deviation between the estimated

pose and the actual pose.

In order to verify the global localization effect of cartog-

rapher algorithm, the map file based on .Pbstream format

shown in Figure 5 is loaded, and the global localization

experiment is carried out by using the pure-localization of

cartographer algorithm. The global localization process is

shown in Figure 6. Figure 6(d) shows the initial state, and

the blue point cloud is the laser scanning point cloud. Figure

6(e) shows the process of creating a local submap. After the

submap is created, it is matched with the global reference

map by scanning matching algorithm. Figure 6(f) shows the

scanning matching result, which is represented as point B in

Figure 5.

Fig. 7. Global localization robustness comparison.

The cumulative success rate is shown in Figure 7. The

figure shows, the localization success rate of amcl algorithm

is very unstable. In the experiment of 10 way points, the

highest localization success rate is 70%, and the lowest local-

ization success rate is 10%. However, the localization success

rate of cartographer pure-localization mode remains between

70% and 90%, which is relatively stable. Cartographer global

localization effect is better than amcl.
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C. Error Analysis of Localization Trajectory

In order to test the real-time localization accuracy of

Aimi-Robot UVC after global localization, the experiment

is carried out on the map shown in Figure 5, and Aimi-

Robot UVC is remotely controlled to move in an irregular

track. As shown in Figure 8, the red generation represents the

theoretical trajectory, while the blue represents the real-time

localization trajectory.

Fig. 8. Real-time localization track.

Analyzing the real-time localization error during the

movement, as shown in Figure 9, the real-time localization

accuracy of Aimi-Robot UVC is about 0.04m, which pro-

vides more accurate real-time localization information for

subsequent autonomous robot navigation.

Fig. 9. Real-time localization error curve.

V. CONCLUSIONS

In this paper, Aimi-Robot UVC is used as the carrier,

and the graph-based slam algorithm is combined with li-

dar sensors, gyroscopes, and odometers to obtain unknown

environmental information and complete the construction of

unknown environmental maps. At the same time, by optimiz-

ing the localization algorithm parameters, the accuracy and

robustness of autonomous localization of the intelligent dis-

infection robot during operation are improved. Experimental

results show that compared with amcl, the relocation success

rate reaches 70%∼90%. At the same time, after the global

localization is successful, the real-time localization accuracy

is restored to 0.04m, which provides an important guarantee

for the autonomous navigation of the mobile disinfection

robot. At present, the semantic information of sensors has

not been used. In the future, research can be combined with

deep learning to promote the rapid development of intelligent

medical service robots.

REFERENCES

[1] G. Z. Yang, B. J. Nelson, R. R. Murphy, et al. “Combating COVID-19–
The role of robotics in managing public health and infectious diseases,”
Science Robotics, vol. 30, no. 1, pp. eabb5589-eabb5589, 2020.

[2] V. Chamola, V. Hassija, V. Gupta and M. Guizani, “A comprehensive
review of the COVID-19 pandemic and the role of IoT, Drones, AI,
Blockchain, and 5G in managing its impact,” IEEE Access, vol. 8, pp.
90225-90265, 2020.

[3] F. Rubio, F. Valero, C. Llopis-Albert. “A review of mobile robots:
Concepts, methods, theoretical framework, and applications,” Interna-
tional Journal of Advanced Robotic Systems, vol. 16, no. 2, 2019.

[4] E. Rubies, et al. “Mobile robot self-localization with 2D push-broom
LIDAR in a 2D map,” Sensors, vol. 20, no. 9, pp. 2500, 2020.

[5] D. Liu, B. Sheng, F. Hou, et al. “From wireless localization to mobile
localization : An overview of recent advances,” IEEE Systems Journal,
vol. 8, no. 4, pp. 1249-1259, 2014.

[6] Z. Alsayed, G. Bresson, A. Verroust-Blondet, and F. Nashashibi. “2D
SLAM correction prediction in large scale urban environments,” in
2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 5167-5174.

[7] C. Cadena, L. Carlone, H. Carrillo, et al. “Past, present, and future of
simultaneous localization and mapping: Toward the robust-perception
age,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309-1332,
2016.

[8] S. Huang, G. Dissanayake, et al. “Convergence and consistency
analysis for extended Kalman Filter based SLAM,” IEEE Transactions
on Robotics, vol. 23, no. 5, pp. 1036-1049, 2007.

[9] A. Hornung, D. Maier, et al. “Monte Carlo localization for humanoid
robot navigation in complex indoor environments,” International Jour-
nal of Humanoid Robotics, vol. 11, no. 2, pp. 1441002, 2014.

[10] T. Fan, H. Wang, M. Rubenstein, et al. “CPL-SLAM: Efficient and
certifiably correct planar Graph-Based SLAM using the complex
number representation,” IEEE Transactions on Robotics, vol. 36, no.
6, pp. 1719-1737, 2020.

[11] A. Dine, B. Vincke, et al. “Graph-based simultaneous localization
and mapping: Computational complexity reduction on a multicore
heterogeneous architecture,” IEEE Robotics Automation Magazine,
vol. 23, no. 4, pp. 160-173, 2016.

[12] H. Gao, X. Zhang, J. Wen, et al. “Autonomous indoor exploration via
polygon map construction and graph-based SLAM using directional
endpoint features,” IEEE Transactions on Automation Science and
Engineering, vol. 16, no. 4, pp. 1531-1542, 2018.

[13] W. Hess, D. Kohler, H. Rapp and D. Andor, “Real-time loop closure
in 2D LIDAR SLAM,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2016, pp. 1271-1278.

[14] W. P. N. dos Reis, O. Morandin and K. C. T. Vivaldini, “A quantitative
study of tuning ROS Adaptive Monte Carlo Localization parameters
and their effect on an AGV localization,” in 2019 19th International
Conference on Advanced Robotics (ICAR). IEEE, 2019, pp. 302-307.

[15] G. Peng, W. Zheng, Z. Lu, et al. “An improved AMCL algorithm based
on laser scanning match in a complex and unstructured environment,”
Complexity, 2018, 2018.

[16] B. Dieber, B. Breiling, S. Taurer, et al. “Security for the robot operating
system,” Robotics and Autonomous Systems, vol. 98, pp. 192-203,
2017.

[17] A. Santos, A. Cunha, N. Macedo, R. Arrais and F. N. dos Santos,
“Mining the usage patterns of ROS primitives,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 3855-3860.

1069

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 15,2023 at 03:28:31 UTC from IEEE Xplore.  Restrictions apply. 


